The visibility of Venus
Albert J. Ahumada, NASA Ames Research Center, al.ahumada@nasa.gov

Abstract
Venus is the only planet or star that can be seen by the naked eye during the day. Following the method of Westheimer (1985) for representing a point source as a single pixel on a screen with a resolution of 120 pixels per degree, we can convert the magnitude of Venus and the sky luminance into a luminance contrast signal with a contrast of 2.22. Detection models calibrated to the Modelfest data predict that such a target is below threshold (Watson and Ahumada, 2005). Modifications are proposed to the models to keep Venus visible.

Figure 1. (Left) The phases of Venus. At its closest approach, Venus subtends 66 arc-seconds. (Credit: TBGS Observatory, photo by Chris Proctor; http://venus.aeronomie.be/en/venus/phasesvenus.htm) (Right) The cycle of the magnitude of Venus.

Venus
Venus has a nearly circular (eccentricity of 0.0067) orbit with a radius of 0.72 AU (the mean distance from the Earth to the Sun) in a plane close to that of the Earth's orbit (3.39 deg). Its brightness (illuminance) is a function of the distances and angles among the three bodies and is essentially periodic (synodic period = 584 days). Its Standard Visual Magnitude M(0,1) (the illuminance seen from the Sun at a distance of 1 AU) is -4.40 (a magnitude of 0 corresponds to an illumination of 2.54E-6 lux and a magnitude of 1 is -0.4 log units higher). Using the circular, coplanar theory to interpolate the illuminance cycle (Appendix A), the estimated visual magnitude on September 10, 2010 was -4.74.

A Digital Venus
Following Westheimer's (1985) suggestion for representing a point source on a digital display, we set the display resolution to 120 pixels per degree and solve for the contrast needed to represent Venus. Using a sky luminance measurement of 4200 cd/m² (Minolta CS100A), the required single pixel contrast turns out to be 2.22. Assuming an effective duration of 0.25 sec, the contrast energy relative to 10E-3 degree² seconds is 19.3 dBB.

The Standard Observer
Watson and Ahumada (2005) propose a single filter model fit to the Modelfest data as a Spatial Standard Observer model for small target contrast detection (Appendix B). The recommended model which has an exponentiated hypersecant high spatial frequency response predicts an 83 per cent detection threshold of 22.0 dBB. The DoG contrast sensitivity energy model predicts a threshold of 22.7 dBB.
Observations

On a clear sunny day, September 10, 2010, at 2:00 PM (PDT), three of the 16 Modelfest observers (ABW, BRB, CVR) looked for Venus, using the Sun and Moon positions and a sky map printout of the sky. BRB was unable to locate it, but the other two and two other staff (AJA, BDA) were able to keep it in view.

Figure 2. Cut out of Sky and Telescope map for Mountain View, CA 94035 USA Sep. 10, 2010, 02:00 pm, showing the relative positions of Venus, the Sun, and the Moon.

It takes minutes to find, but once found it is easy to keep in view. It does not appear to flicker or vary in contrast. When you look away and then look back, it can take many seconds to find it again. It is the smallest object I have ever seen (smaller than you expect before you find it). It looks round and white.

Discussion

The possible need for a higher spatial frequency response for a Standard Observer has arisen before (Watson & Ahumada, 2008). The Standard Observer (7.0 dBB) misses the median Modelfest threshold (5.5 dBB) for the sigma = 1.05 arc min Gaussian. The amount is smaller, but the spots suffer from spatial uncertainty relative to the multitude of 4 cpd Gabors (Ahumada, Scharff, & Watson, 2007). More modeling is needed for the processes by which the visual system acquires and tracks small targets as they flit about the retina.

References

Modelfest http://vision.arc.nasa.gov/modelfest/.

Sky and Telescope map site http://www.skyandtelescope.com/observing/skychart/

Acknowledgments

Supported by NASA Space Human Factors Engineering and the Office of Naval Technology Capable Manpower Future Capabilities Program.
Appendix A **Magnitude Interpolation by Days**

function mag = venusmag(day)

% Venus magnitude assuming flat, circular orbits
% of Earth and Venus
% Problem: what are a and dve as a function of the
% 583.92 day synodic period
% Tropical orbit periods (days) 224.695 365.242
delv = 2*pi/224.695 ; % radians per day
dele = 2*pi/365.242 ;
dvsr = 108.25/149.6 ; % 0.7236
day = [0:584];

xe = sin(dele*day); ye = -cos(dele*day);
xv = -dvsr*sin(delv*day); yv= dvsr*cos(delv*day);
dver = sqrt((xv - xe).^2 + (yv - ye).^2) ;
a = acos((dver.^2 + dvsr^2 -1)./(2*dver*dvsr));
p = (1-a/pi).*cos(a) + (1/pi)*sin(a); % p(a)/p(0)
mag = -4.40 + 2.5*log10(1./p) + 5*log10(dvsr*dver) ;
Appendix B
Standard Observer Model

%Standard Observer Model Test Routine
function test_sso() % with all functions in file test.m,
% type 'test' in the command window
n = 16; ppd = 120;
% Modelfest #29
im = gauss2(n,1.05*ppd/60);
dB0 = 60+10*log10(0.125*sqrt(pi))-20*log10(120)+20*log10(norm(im(:))) ;% 23.2072
% Venus image
% im = zeros(n); im(n/2+1,n/2+1) = 2.22 ;
dB0 = 60+10*log10(0.25)-20*log10(ppd)+20*log10(norm(im(:))) ;% 19.3228
dB = zeros(2,9);
for icsf = 1:9
 for ibeta = 1:2
 dB(ibeta,icsf) = sso(icsf,ibeta-1,ppd,im);
 end
end
dB % Modelfest #29
% (gain required to reach threshold)
% Venus
% 2.6560 2.7090 2.7349 2.5204 2.4894 2.7899 2.8536 2.7140 3.3922
% 4.1947 4.2189 4.1477 2.5194 2.4894 2.7899 2.8536 2.7140 3.3922

%Standard Observer Model
function dBthr = sso(csftype,beta_is_2,pixperdeg,contrast_image)
im = contrast_image; n = size(im,1) ;
ppd = pixperdeg;
parm = sso_parms(csftype,beta_is_2);
gain = parm(1); beta = parm(5); s = parm(7);
csf = sso_csf(n,parm,csftype,ppd);
csf = csf.*oblique(n,3.48*(n/ppd),13.57*(n/ppd));
im = real(ifft2(fft2(im).*csf)) ;
im = im.*gauss2(n, s*ppd) ;
dBthr = -20*log10(norm(im(:),beta)*gain/ppd^(2/beta)) ;

%Standard Observer Model CSF subroutine
function csf = sso_csf(n,parm,csftype,ppd)
f0 = n*parm(2)/ppd; f1 = n*parm(3)/ppd;
a = parm(4); p = parm(6);
switch csftype
 case 1; csf = fltsech2(n,f0,p) - a*fltsech2(n,f1,1); % HPmH
 case 2; csf = fltsech2(n,f0,p) - a*filtgaus2(n,f1); % HPmG
 case 7; csf = fltsech2(n,f0,1) - a*fltsech2(n,f1,1); % HmH
 case 6; csf = fltsech2(n,f0,1) - a*filtgaus2(n,f1); % HmG
 case 4; csf = fltexp2(n,f0) - a*filtgaus2(n,f1); % EmG
 case 9; csf = filtgaus2(n,f0) - a*filtgaus2(n,f1); % DoG
 case 3; csf = fltyqm2(n,f0, a, f1); % YQM
 case 5; csf = fltlp2(n,f0, a, f1); % LP
 case 8; csf = fltms2(n,f0, a, f1); % MS
end

%Standard Observer Model Parameters
function parm = get_parms(csftype,beta_is_2)
parms = zeros(9,7,2);
parms(:,:,1) =
% Gain f0 f1 a beta p s
373.08 4.1726 1.3625 0.8493 2.4081 0.7786 0.6273
289.45 5.3459 1.9793 0.7983 2.4054 0.8609 0.6311
466.38 7.0629 0.6951 7.7712 2.3557 0.5790
360.24 7.5237 1.8972 0.8155 2.4725 0.5790
214.46 3.2316 0.7127 2.4902 0.8081 0.7118
258.17 6.8432 1.7483 0.7778 2.3277 0.5579
271.71 6.7770 1.0461 0.8082 2.2950 0.5311
551.29 1.7377 0.5702 0.6937 0.6937 0.6937 0.6937
272.74 15.3870 1.3456 0.7622 1.9960 0 0.3548]

parms(:, :, 2) = [...% Gain f0 f1 a beta p s
501.20 4.3469 1.4476 0.8514 2 0.7929 0.3652
359.87 6.0728 1.9505 0.7931 2 0.9186 0.3655
621.38 7.0856 0.7285 8.0721 2 0.3652
504.43 7.6399 1.9788 0.8163 2 0.3635
299.21 3.3578 0 0.7193 2 0.8009 0.3612
329.93 6.9248 1.8045 0.7827 2 0.3662
345.78 6.7581 1.1210 0.8128 2 0.3635
707.51 2.4887 0 0.9846 2 0.7748 0.3596
271.70 15.3852 1.3412 0.7615 2 0 0.3563]

parm = parms(csftype,:,1+beta_is_2);

function filt = oblique(n, gamma, lambda)
filt = exp(gamma/lambda)*fltexp2(n, lambda);
filt = 1-(1-min(1,filt)).*sin(2*fltorient(n)).^2 ;

function g = gauss2(n, sigma)
g1 = exp(-0.5*(([0:n-1]-floor(n/2))/sigma).^2);
g = g1'*g1;

function filter = fltsech2(n, f, p) % Hyperbolic secant (HP)
filter = sech((fltf2(n)/f).^p) ;

function filter = fltexp2(n, f) % Exponential (E)
filter = exp(-fltf2(n)/f) ;

function filter = fltgaus2(n, f) % Gaussian (G)
flt1 = fltgaus1(n,f);
flt=flt1'*flt1;

function filter = flt1p2(n, f, p, a) % Log Parabola (LP)
a = 10^-(p*sqrt(-log10(1-a))) ;
filter = max(a, fltf2(n)/f) ;
filter = 10.^(-(1/p)*log10(filter)).^2) ;

function filter = fltms2(n, f, p, a) % Mannos & Sakrison (MS)
filter = fltf2(n)/f;
filter = exp(-filter.*(1 - a + filter)) ;

function filter = fltyqm2(n, f0, a, f1) % Yang-Qi-Makous (YQM)
filter = fltf2(n)/f0;
filter = exp(-filter)./(1 + a./(1+(filter*(f0/f1)).^2)) ;

function filter = fltgaus1(n, f) % 1-D Gaussian
filter = fltf1(n)/f;
filter = exp(-(filter.*filter)) ;

function f = fltf2(n) % 2-D frequencies in cycles per image
f1 = fltf1(n);
f = repmat(f1.*f1,[n 1]) ;% fx^2
f = sqrt(f + f') ; % sqrt(fx^2 + fy^2)

function f = fltf1(n) % 1-D frequencies in cycles per image
n2 = ceil(n/2);
f = [0:floor(n/2) [1:n2-1]-n2];

function theta = fltorient(n) % filter frequency orientations
theta = repmat(fltf1(n),[n 1]) ;% fx
theta = atan2(theta',theta) ;% arctan(fy,fx)