Orientation Response Properties of Inhibitory Cells in a Model of Cat Primary Visual Cortex
Anton Krukowki* and Ken Miller
University of California, San Francisco
*Currently at NASA Ames Research Center, Moffett Field, CA

Inhibitory Cells in a Model of Cat Primary Visual Cortex

- **General Model Description**
 - Correlation Based Intracortical Connectivity
 - Model Cortical RF

- **Effects of Synaptic Depression**
 - Mean Inhibitory Cell Firing Rate

- **Effects of Depression on Inhibitory Cell Tuning**
 - Normalized Firing Rate

- **Effects of Removing Feedback E->I Connections**
 - Effects of Removing Feedback E->I Connections

- **Temporal Frequency Tuning**
 - Effects of Removing Feedback E->I Connections

- **Inhibitory Cell Temporal Tuning**
 - Inhibitory Cell Temporal Tuning

Experimental Comparisons
- Temporal frequency tuning (inhibitory cells)
- Effects of removing feedback (E->I)
- Neuronal firing rate (E, I, E->I)
- Synaptic depression, AMPA and NMDA
- Experimental results and modeling

Conclusions
- Synaptic depression significantly affects the firing rate of inhibitory cells.
- Effects of removing feedback are considered in the model.
- Temporal frequency tuning is preserved in the model.
- Experimental results support the model predictions.

Further Analysis
- Analysis of inhibitory cell firing rates
- Effects of synaptic depression
- Comparison with experimental data
- Model validation using real-world data