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ABSTRACT
We present a method for estimating the point of fixation

of an air traffic controller from a low resolution video se-
quence. A geometric model of the head is used to estimate
head orientation; head pose estimates are combined with a
3D model of the environment to compute the target of gaze.
The head model is constructed from a small set of images.
Two lighting models are considered: in the first, we only
use ambient lighting; in the second, we add a finite distance
point source. In both cases, we jointly estimate the albedo of
each facet of the head model and the parameters of the light-
ing model. Because ground-truth data are unavailable, the
absolute accuracy of the gaze estimates is unknown. With
either method, the results are sufficiently accurate to answer
questions of operational interest, such as ”is the controller
looking out the window.”

1. INTRODUCTION

Gaze tracking is an important component of behavioral
analyses in a number of application areas. We are interested
in the problem of air-traffic control displays. Tower based
ground controllers rely both on computer displays, and di-
rect out-the-window views of the runways and taxiways.
When a change is made to the user interface of the computer
system, we would like to know how it affects controller be-
havior, and, ultimately, the safety of the system. A simple
measure is how much time is spent fixating the display, ver-
sus objects out the window. Of course, increased time spent
fixating the display could mean a number of things: it might
mean that the display is hard to understand and therefore re-
quires more study (a situation we would like to correct), or
it might mean that the display has been improved and can
deliver more information than the out-the-window view (a
situation we would like to achieve). Discrimination between
these alternatives will be left to the experts and designers of
the interfaces; our task is merely to provide the raw gaze
data for their consideration.

Gaze tracking is most often done by imaging the eyes
themselves. This approach provides the most accurate esti-

mates of gaze, but imposes requirements that are impracti-
cal in applied settings. We have therefore concentrated our
efforts on estimating the ”head gaze” of the controller, as
observed from a remote wide-field camera. Unlike previ-
ous approaches to head coding for video telephony [1], the
head is a relatively small part of our images, subtending a
mere 30 pixels or so. For our initial efforts, we have used a
short sequence of video collected in the Future Flight Cen-
tral control tower simulator at NASA Ames Research Cen-
ter. In the remainder of the paper, we describe the methods
we have applied to video based estimation of head gaze, and
present our results.

2. HEAD POSE ESTIMATION

Photo-realistic modeling of the head requires knowledge of
its shape, pigmentation (albedo) and the lighting conditions.
Recovery of any one of these components is relatively easy
if the other two are known exactly [2] but this is rarely the
case.

To obtain the location of the head in each image, we
applied a simple correlation based template matching ap-
proach. While this method sufficed to get us started, it is not
particularly robust. More sophisticated methods have been
proposed [3], which we hope to incorporate in the future.

Our approach to head pose estimation is an iterative one,
using the analysis-by-synthesis method. We construct a tex-
tured model of the subject’s head which we can manipulate
and render in any orientation. We then search for the po-
sition and orientation which maximizes the similarity be-
tween the rendered model and the input image. Direct mea-
surement of head shape is not an option, because the video
was recorded in the past and the subjects are no longer avail-
able. We are therefore primarily interested in systems that
construct head models from sequences of images [1] [4].

2.1. Head shape

Ultimately, we would like to have a fully automated way of
generating head shapes and albedos from a small set of im-



Fig. 1. The 3D NURBS head shape model

ages. As of this writing, however, the implementation of our
shape optimizer is not complete, and we therefore present
results obtained using a generic head model adjusted man-
ually to approximate the subject’s head (Figure 1). This is
reasonable given the low resolution of our source imagery.
Head shape was described using NURBS (Non-Uniform
Rational B-Splines). Once the head model was constructed,
we stored the resulting vertices for further use. We treat the
head as a rigid object, ignoring facial expression changes.

2.2. Albedo and lighting

Two different lighting models were used to render the syn-
thetic head. For each of the models a corresponding albedo
was computed.

The first model (model A) consisted of an ambient light.
In that case, surface reflectance and illumination were
lumped together into a single albedo. The simplicity of the
model doesn’t require lighting effects to be enabled while
rendering, and the albedo was directly extracted from the
image intensity values.

The second model (model B) contained an ambient illu-
minant as well as a single point omni-directional source at
finite distance. This additional light source allows the model
to fit better the lighting of the actual environment, which is
not just ambient. However, it requires the estimation of ad-
ditional parameters: position and brightness of point source.
When using this model, the head is rendered with all light-
ing effects.

2.3. Pose estimation

When the head model shape and the complete albedo in-
formation become available, we can render the head at any
orientation, position and scale. Therefore, provided that the
model is accurate enough, we should be able to match the
image produced by it with the target if the correct pose pa-
rameters are used. Using the STEPIT package [5], we try
to find the 6 optimum parameters− 3 orientation angles, 2

Fig. 2. Training set used for albedo estimation

Fig. 3. Iterative estimation of albedo and lighting

position displacements and a scaling factor− that will pro-
duce a synthetic image matching the target. While computa-
tionally expensive, STEPIT has certain advantages over ap-
proaches that rely upon linearization of the problem [6], in
that large changes in orientation can be successfully tracked.

3. ALBEDO ESTIMATION

A set of training images was selected in such a way as to
provide enough information to get a comprehensive textur-
ing of the entire head (Figure 2). Those images where ex-
tracted from the input video.

For model A, there are no lighting parameters and the
albedo is estimated by a sampling of the pixel intensities.

For model B, we use an iterative approach to jointly es-
timate skin albedo and lighting geometry. We first estimate
the parameters of this lighting model− 3 position parame-
ters of the point source, brightness of point source, bright-
ness of ambient light− using a frontal view of the face and a
constant skin albedo of0.5. The skin is assumed to be Lam-
bertian with no specular component. We then use STEPIT
to find the parameters of the lighting model which maximize
the correlation of the rendered model with the image data.

Now, having initial estimates of both the albedo and the
lighting, we iteratively refine both estimates in alternation
(Figure 3). To update the estimate of the albedo, we re-
visit each image in the training set. For each image, we use
an estimate of the pose manually input by an operator. We
attempted to use automatic pose estimation , but perhaps
because of errors in the shape and lighting model, this was
unstable.

Given an estimate of the pose corresponding to a partic-
ular training image, we update our estimate of the albedo
by projecting the model vertices onto the image plane and
sampling the corresponding pixel intensities in the input and



Fig. 4. Albedo estimation procedure

rendered images. Albedo is recovered from the sampled in-
tensities by factoring out the lighting effects as follows:

an+1 =
Iinput

Irendered
an (1)

an being the albedo coefficient at iterationn andI the in-
tensity.

Once a new albedo is extracted from one of the images, it
is merged with the overall estimate derived from the previ-
ously processed images. A weighted average of the albedo
color at each vertex is computed:

ai =

∑N
j=1 wijaij∑N

j=1 wij

i = 1, 2, . . . , M (2)

whereai is the albedo color at vertexi, wij is the weight
at vertexi for the viewj, aij is the sampled albedo color at
vertexi at viewj, N is the number of different views and M
the number of vertices.

Facets that are seen obliquely will be weighted less than
the ones that are more nearly normal to the line of sight. The
weightwij assigned to vertexi at viewj is proportional to
the length of the depth component of the normalnij to the
facet that contains the vertex.

Fig. 5. (a). Original video frame. (b) Simulated camera
view. (c) Simulated back view.

wij = max(−nT
ij ez, 0) (3)

whereez is the unit vector of the direction of the line of
sight.

After each update of the albedo estimate (procedure
shown in Figure 4), we reestimate the lighting parameters.

4. GAZE ESTIMATION

The pose or orientation of the head is not sufficient by it-
self to determine the target of gaze. The head must also
be located within the 3D scene. Also, in order to describe
the target of gaze in a meaningful form, it is necessary to
construct a 3D model of the surfaces in the subject’s envi-
ronment, and label the objects within it.

We constructed a 3D model of the interior of the control
tower simulator, using data from architectural drawings and
direct measurement. We then estimated the intrinsic and ex-
trinsic camera parameters necessary to align a rendering of
the model with the image data (Figure 5). Once the corre-
spondence between the image data and the scene model has
been established, the surfaces of the scene model can be tex-
tured with data extracted from the video images in much the
same way that the head model was textured. Novel views of
the scene can then be rendered using the model.

Because we have only a single view of the scene, the
depth of the subject’s head is somewhat ambiguous. This
ambiguity was resolved by assuming that the subject’s head
remained at a constant distance from the floor. With this as-
sumption, the location in the 3D scene is determined by the
2D position in the image. The gaze vector can then be cast
from the head location and intersected with the surfaces in
the scene model. Labeling of regions in the scene surfaces
allows categorization of the gaze target (display, window,
papers, etc.).

5. RESULTS

Qualitatively, we noticed that the simple ambient lighting
model gave better estimates of the head orientation than the



Fig. 6. Normalized correlation between input head and syn-
thetic one

one with the point source. Figure 6 shows the normalized
correlation between the input image head and the rendered
one for a 1000 frame segment of the video. We see that the
correlation obtained with the simple model is always greater
than the one obtained when the point source is included. So
the simple model creates synthetic head images that better
match the input image. This can be explained by the fact
that the additional point source didn’t represent the actual
lighting accurately. The real head in the actual environment
was lit by several extended sources (3 LCD screens and 3
large windows in front of the operator). Our estimates of the
additional light source were probably not precise enough.
Then this simplification of the lighting model induced dis-
tortions of the estimated albedo and a lack of robustness
of the pose estimation for frames that didn’t belong to the
training set of head images. To improve our system, we in-
tend to use the model of the interior of the control tower,
and place the different lighting sources where they actually
are (screens and windows). We would then only need to
estimate the brightness of each source.

Figure 7 shows the relative fixation times for various ob-
jects in the scene that were computed given the first simpli-
fied lighting model (left) and the more elaborate one (right).

6. DISCUSSION

We have demonstrated the recovery of crude gaze informa-
tion using head pose estimated from low resolution video
data. While we have yet to match the performance existing
methods have obtained with high quality images, the results
are nonetheless sufficiently accurate to be useful for auto-
mated behavioral analyses. Lighting compensation has the
potential to improve the quality of the results both in model

Fig. 7. Distribution of object fixations for model A (left)
and model B (right)

construction and pose estimation, although our current re-
sults are inconclusive regarding the magnitude of the im-
provements. Future work will focus on improving the light-
ing model and automatically optimizing the head shape.
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