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40

41 In this paper, we propose the application of the
42 Kernel Principal Component Analysis (PCA) tech-
43 nique for feature selection in a high-dimensional
44 feature space, where input variables are mapped by
45 a Gaussian kernel. The extracted features are
46 employed in the regression problems of chaotic
47 Mackey–Glass time-series prediction in a noisy
48 environment and estimating human signal detection
49 performance from brain event-related potentials elic-
50 ited by task relevant signals. We compared results
51 obtained using either Kernel PCA or linear PCA
52 as data preprocessing steps. On the human signal
53 detection task, we report the superiority of Kernel
54 PCA feature extraction over linear PCA. Similar to
55 linear PCA, we demonstrate de-noising of the orig-
56 inal data by the appropriate selection of various
57 nonlinear principal components. The theoretical
58 relation and experimental comparison of Kernel
59 Principal Components Regression, Kernel Ridge
60 Regression and �-insensitive Support Vector
61 Regression is also provided.

62 Keywords: De-noising; Feature extraction; Human
63 performance monitoring; Kernel functions; Nonlinear
64 regression; Principal components
65

66 1. Introduction

67 In many real world applications, appropriate prepro-
68 cessing transformations of high dimensional input
1
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69data can increase the overall performance of algor-
70ithms. In general, there are some correlations among
71input variables; thus dimensionality reduction or so-
72called feature extraction allows us to restrict the
73entire input space to a sub-space of lower dimen-
74sionality.
75In this study, we have used the recently proposed
76Kernel Principal Component Analysis (PCA) [1]
77method for feature selection in a high dimensional
78feature space F (with dimension M � �). This
79allows us to obtain features (nonlinear principal
80components) with higher-order correlations between
81input variables, and in addition, we can extract
82nonlinear components up to the number of data
83points n [1] (assuming n � M). Kernel PCA [1] is
84based on computation of the standard linear PCA
85[2] in a feature space, into which input data x are
86mapped via some nonlinear function �(x). To this
87end, we compute a canonical dot product in space
88F using a kernel function, i.e. K(x,y) � (�(x).�(y)).
89This ‘kernel trick’ allows us to carry out any algor-
90ithm, e.g. Support Vector Regression (SVR) [3–5],
91that can be expressed in the terms of dot products
92in space F. Next, the selected features are used to
93train the �-insensitive SVR (see reference for
94detailed description [3]) and Kernel Principal
95Components Regression (KPCR) [6] models to esti-
96mate the desired input-output mappings. Both tech-
97niques perform a linear regression in a feature space
98F, however, different cost functions are used. Whilst
99the �-insensitive cost function used in SVR is more
100robust for noise distributions close to uniform, in
101the case of Gaussian noise, the best approximation
102to the regression provides a quadratic cost function.
103Applying a quadratic cost function to SVR leads to
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104 Kernel Ridge Regression (KRR) [7,5]. Both KRR
105 and KPCR are the shrinkage estimators designed to
106 deal with multicollinearity or near-linear dependence
107 of regressors (e.g. see [8,9,2]). Multicollinearity
108 results in large variances and covariances for the
109 least-squares estimators of the regression coef-
110 ficients, and can dramatically influence the effective-
111 ness of a regression model. We will give the theor-
112 etical basis of KPCR, and will also highlight the
113 relation to KRR.
114 In noisy environments, linear PCA is a widely
115 used de-noising technique. We can discard the finite
116 variance due to the noise by projection of the data
117 onto the main principal components. The same tech-
118 nique can be applied in feature space F by using
119 the main nonlinear principal components computed
120 by Kernel PCA. However, the number of nonlinear
121 principal components extracted by Kernel PCA can
122 be substantially higher (up to the number of data
123 points n). This can be nearly always advantageous,
124 especially in the situation where the dimensionality
125 N of the input data points is significantly smaller
126 than the number of data points, and a data structure
127 is spread over all eigendirections. In this case,
128 decreasing the input dimensionality by projecting
129 the input data to l � N main linear principal compo-
130 nents may lead to the loss of significant amounts
131 of information. On the other hand, we can believe
132 that ‘spreading’ the information about the data struc-
133 ture into k � N nonlinear principal components
134 will give the potential of discarding some of the
135 eigendirections where the noisy part of data is
136 mainly contained.
137 On two data sets – the chaotic Mackey–Glass
138 time series and human Event Related Potentials
139 (ERPs) – we compared KPCR, KRR and SVR1

140 techniques. We demonstrate that by selection of a
141 subset of nonlinear principal components used in
142 KPCR we can achieve superior or similar results
143 compared to KRR, moreover, in the case of KPCR
144 the final linear model in a feature space is signifi-
145 cantly smaller. On the ERPs data set, the results
146 suggest the superiority of Kernel PCA for feature
147 extraction over linear PCA in some cases. In
148 addition, the performance of KPCR and KRR mod-
149 els using the quadratic loss function is slightly
150 superior to SVR. This suggests that on that particular
151 data set a Gaussian type of noise is more likely,
152 i.e. the regression models with a quadratic loss
153 function are preferable.
154 The following section presents the Kernel PCA
155 technique and linear regression models in a high
1

1018
1 We are assuming an SVR model with the �-insensitive cost func-

1019 tion.
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156dimensional kernel defined space. The problem of
157de-noising of the data set in the kernel space is also
158addressed. In Section 3, the construction of the data
159sets employed is described. Section 4 discusses the
160results. Section 5 concludes the paper.

1612. Methods

1622.1. Kernel PCA and Multi-Layer SVR

163The PCA problem in high-dimensional feature space
164F can be formulated as the diagonalisation of an
165n-sample estimate of the covariance matrix

166Ĉ �
1
n �

n

i�1

�(xi)�(xi)T

167

168where �(xi) are centered nonlinear mappings of the
169input variables xi � RN i � 1, %, n (the centralis-
170ation of the mapped data in F is given in Appendix
171A). The diagonalisation represents a transformation
172of the original data to new coordinates defined by
173orthogonal eigenvectors V. We have to find eigenva-
174lues � 	 0 and non-zero eigenvectors V � F
175satisfying the eigenvalue equation.

176�V � ĈV 177

178Realising that all solutions V with � 
 0 lie in the
179span of mappings �(x1), %, �(xn), Schölkopf et al.
180[1] derived the equivalent eigenvalue problem

181n�� � K� (1) 182

183where � denotes the column vector with coefficients
184�1, %, �n such that

185V � �n

i�1

�i�(xi)
186

187and K is a symmetric (n � n) Gram matrix with
188the elements

189Kij � (�(xi).�(xj)) :� K(xi,xj) 190

191Normalising the solutions Vk corresponding to the
192non-zero eigenvalues �k of the matrix K, translates
193into the condition �k(�k.�k) � 1 [1]. Finally, we
194can compute the projection of �(x) onto the kth
195nonlinear principal component by

196
(x)k :� (Vk.�(x)) � �n

i�1

�k
i K(xi, x) (2)

197

198We then select the first p � n nonlinear principal
199components, e.g. the directions which describe a
200desired percentage of data variance, and thus work
201in the p-dimensional sub-space of feature space F.
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202 This allows us to construct multi-layer support vec-
203 tor machines [1], where a preprocessing layer
204 extracts features for the next regression or classi-
205 fication task. In our study, we focus on the
206 regression problem.
207 Generally, the SVR problem (e.g. see [4]) can be
208 defined as the determination of function f(x,�),
209 which approximates an unknown desired function
210 and has the form

211 f(x, �) � �T�(x) � b212

213 where b is an unknown bias term and � � F is
214 a vector of unknown coefficients. The following
215 regularised risk functional has been used [3] to
216 compute the unknown coefficients b and �:

217 Rsvr(�,b) �
1
n �

n

i�1

�Err�� � ����2 (3)
218

219 where Err � yi � f(xi, �), {yi}n
i�1 are the desired

220 outputs, � 	 0 is a regularisation constant to control
221 the trade-off between complexity and accuracy of
222 the regression model, and �Err�� is Vapnik’s �-insen-
223 sitive loss function [3].
224 It has been shown [3] that the regression estimate
225 that minimises the risk functional (3) has the form

226 f(x, �, �*) � �n

i�1

(�*i � �i)K1(xi, x) � b (4)
227

228 where {�i, �*i }n
i�1 are Lagrange multipliers.

229 Combining the Kernel PCA preprocessing step
230 with SVR yields a Multilayer SVR (MLSVR) in
231 the following form [1]:

232 f(x, �, �*) � �n

i�1

(�i � �*i )K1(�(xi),�(x)) � b
233

234 where components of vectors � are defined by (2).
235 However, in practice the choice of appropriate kernel
236 function K1 can be difficult. In this study, a poly-
237 nomial kernel of first order K1(x,y) � (x.y) is
238 employed. We are thus performing a linear SVR on
239 the p-dimensional sub-space of F. The advantage
240 of linear SVR over ordinary linear regression is the
241 possibility of using a large variety of loss functions
242 to suit different noise models [4], e.g. Vapnik’s
243 proposed �-insensitive function is more robust for
244 noise distributions close to uniform, and also pro-
245 vides a sparse solution to the regression problem.
246 However, in the case of Gaussian noise, the best
247 approximation to the regression provides a least-
248 squares method with the quadratic loss function of
249 the form L(yi, f(xi,w)) � [yi � f(xi,w)]2. We discuss
250 methods using this loss function in the next section.
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2512.2. Feature Space Regularised Least-Squares
252Regression Models and Multicollinearity

253The multicollinearity or near-linear dependence of
254regressors is a serious problem that can dramatically
255influence the usefulness of a regression model.
256Multicollinearity results in large variances and
257covariances for the least-squares estimators of the
258regression coefficients. Multicollinearity can also
259produce estimates of the regression coefficients that
260are too large in absolute value. Thus, the values
261and signs of estimated regression coefficients may
262change considerably given different data samples.
263This effect can lead to a regression model which
264fits the training data reasonably well, but in general,
265bad generalisation of the model can occur. This fact
266is in a very close relation to the argument stressed
267in Smola et al. [10], where the authors have shown
268that choosing the flattest function2 in a feature space
269can, based on the smoothing properties of the selec-
270ted kernel function, lead to a smooth function in
271the input space. There are several methods to deal
272with multicollinearity; in our case, we discuss the
273Ridge Regression (RR) and Principal Component
274Regression (PCR) approaches. Using the theoretical
275basis of these techniques in input space, we now
276discuss their parallel in a kernel defined feature
277space, i.e. KPCR and KRR.

2782.2.1. Kernel Principal Component Regression. Con-
279sider the standard regression model in feature
280space F
281y � �� � � (5) 282

283where y is a vector of n observations of the depen-
284dent variable, � is an (n � M) matrix of regressors
285whose ith row is the vector �(xi) of the mapped xi

286observation into M � � dimensional feature space
287F, � is a vector of regression coefficients and � is
288the vector of error terms whose elements have equal
289variance �2, and are independent of each other. We
290also assume that regressors {�j(x)}M

j�1 are zero-
291mean. Thus, �T� is proportional to the sample
292covariance matrix, and Kernel PCA can be per-
293formed to extract M eigenvalues {�j}M

j�1 and corre-
294sponding eigenvectors {Vj}M

j�1. The projection of the
295�(x) onto the kth nonlinear principal component is
296given by Eq. (2). By projection of all original
297regressors onto the principal components, we can
298rewrite Eq. (5) as

299y � Bw � � (6) 300

1

1020
2 The flatness is defined in the sense of penalising high values

1021of the regression coefficients estimate.
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301 where B � �V is now an (n � M) matrix of
302 transformed regressors, and V is an (M � M) matrix
303 whose kth column is the eigenvector Vk. The col-
304 umns of the matrix B are now orthogonal, and the
305 least squares estimate of the coefficients w becomes

306 ŵ � (BTB)�1BTy � ��1BTy (7)307

308 where � � diag(�1, �2, . . ., �M). The results
309 obtained using all principal components for the pro-
310 jection of the original regressor variables for Eq.
311 (6) are equivalent to those obtained by least squares
312 using the original regressors.
313 In fact, we can express the estimate �̂ of the
314 original model of Eq. (5) as

315 �̂ � Vŵ � V(BTB)�1BTy � �M
i�1

��1
i Vi(Vi)T�Ty

316

317 and its corresponding variance-covariance matrix
318 [2] as

319 cov(�̂) � �2V(BTB)�1VT � �2V��1VT (8)

320 � �2 �M
i�1

��1
i Vi(Vi)T

321

322 To avoid the problem of multicollinearity PCR uses
323 only some of the principal components. It is clear
324 from Eq. (8) that the influence of small eigenvalues
325 can significantly increase the overall variance of the
326 estimate. PCR simply deletes the principal compo-
327 nents corresponding to small values of the eigenval-
328 ues �i, i.e. the principal components where multicol-
329 linearity may appear. The penalty we have to pay for
330 the decrease in variance of the regression coefficient
331 estimate is bias in the final estimate. However,
332 if multicollinearity is a serious problem, the bias
333 introduced can have a less significant effect in com-
334 parison to a high variance estimate. If the elements
335 of w corresponding to deleted regressors are zero,
336 an unbiased estimate is achieved [2].
337 Using the first p-nonlinear principal components
338 (2) to create a linear model based on orthogonal
339 regressors in feature space F, we can formulate the
340 KPCR model as

341 f(x,c) � �p

k�1

wk
(x)k � b (9)

342 ��p

k�1

wk �n

i�1

�k
i K(xi, x) � b

343 ��n

i�1

ciK(xi, x) � b
344

345 where {ci � �p
k�1wk�

k
i}n

i�1.
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346We have shown that by removing the principal
347components whose variances are very small, we can
348eliminate large variances of the estimate due to
349multicollinearities. However, if the orthogonal
350regressors corresponding to those principal
351components have a large correlation with the depen-
352dent variable y, such deletion is undesirable
353(experimentally demonstrated in Rosipal et al. [11]).
354There are several different strategies for selecting
355the appropriate orthogonal regressors for the final
356model (see References [2,12], and the references
357therein). In Rosipal et al. [11], we considered the
358Covariance Inflation Criterion [13] for model selec-
359tion in KPCR as a novel alternative to methods
360such as cross-validation.

3612.2.2. Kernel Ridge Regression. KRR is another
362technique to deal with multicollinearity by assuming
363the linear regression model (5) whose solution is
364now achieved by minimising

365Rrr(�,b) � �n
i�1

[yi � f(xi,�)]2 � ����2 (10)
366

367where f (x, �) � �T�(x) � b and � is a regularis-
368ation term. The least-squares estimate of � is biased,
369but the variance is decreased (e.g. see [9]). Similar
370to the KPCR case, we can express the variance-
371covariance matrix of the � estimate [2] as

372cov(�̂) � �2 �M
i�1

�i(�i � �)�2Vi(Vi)T

373

374We can see that, in contrast to KPCR, the variance
375reduction in KRR is achieved by giving less weight
376to small eigenvalue principal components via the
377factor �.
378In practice, we usually do not know the explicit
379mapping �(.), or its computation in the high-dimen-
380sional feature space F may be numerically intrac-
381table. Using the dual representation of the linear
382RR model, the authors derived the formula [7] for
383estimation of the weights � for the linear RR model
384y � �T�(x) in feature space F, i.e. (nonlinear)
385KRR. Again, using the fact that K(x,y) � �(x)T

386�(y), we can express the final KRR model in the
387dot product form [7,5]

388f(x) � cTk � yT(K � �I)�1k (11) 389

390where K is again an (n � n) Gram matrix consisting
391of dot products Kij � (�(xi).�(xj)) i, j � 1, %, n;
392k is the vector of dot products of a new mapped
393input example �(x), and the vectors of the training
394set, i.e. Ki � (�(xi).�(x)), and I is an (n � n)
395identity matrix. It is worth noting that the same
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396 solution to the RR problem in the feature space F
397 can also be derived based on the dual representation
398 of Regularisation Networks (e.g. see [14]), or
399 through the techniques derived from Gaussian pro-
400 cesses [15,5].
401 We can see that including a possible bias term
402 in the model leads to its penalisation through the
403 term. However, in the case of regression or classi-
404 fication tasks, there is no reason to penalise the
405 shift of f(.) by a constant. To overcome this, we
406 can add an extra unpenalised bias term to our linear
407 regression model in F. Effectively, it means using
408 a new kernel of the form

409 K̂(x, y) � K(x, y) � �0, �0 � R410

411 Now, the solution will take the form [14,16,17]

412 f(x) � �n

i�1

ciK̂(x, xi) � b̂

413 � �n

i�1

ci(K(x, xi) � �0) � b̂

414 � �n

i�1

ciK(x, xi) � b (12)
415

416 and the unknown coefficients {ci}n
i�1, b � �n

i�1

417 ci�0 � b̂ can be found by solving the following
418 system of linear Eq.s [14,17]:

419 (K̂ � �I)c � 1b � (K � (� � �0)I)c � 1b

420 � (K � �newI)c � 1b � y

421 �n

i�1

ci � 0 (13)
422

423 where 1 is an (n � 1) vector of ones. Thus, we
424 can still use a positive definite kernel K as the only
425 change is to estimate new b and �new terms. Recall
426 that the solution of the SVR, i.e. assuming the linear
427 regression model y � �T�(x) � b in the feature
428 space F, leads to the nonlinear regression model
429 (12). In fact, the authors have shown [18] that using
430 the quadratic loss function in the case of SVR
431 transforms the general quadratic optimisation prob-
432 lem [4] for finding the estimate of the weights � �
433 �n

i�1ci�(xi) and b to the solution of the linear
434 Eqs. (13).
435 Another technique in removing a ‘bias’ term is
436 to ‘centralise’ the regression problem in feature
437 space, i.e. assume the sample mean of the mapped
438 data �̃ (xi) and targets ỹ to be zero. This will lead
439 to the regression problem ỹ � �̃T�̃(x) without the
440 bias term. The centralisation of the individual
441 mapped data points �(x) can be done by the same
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442‘centralisation’ of the Gram matrix K and vector k
443as described in Appendix A. The solution is then
444given by modification of Eq. (11) to the form

445f̃(x) � ỹT(K̃ � �I)�1k̃ (14) 446

447We observed [19] that both approaches provide
448the same results.

4492.2.3. Summing Up. Using the analogy with PCR
450and RR in input data space, a connection between
451regularised linear regression models in feature space
452F corresponding to KPCR and KRR has been estab-
453lished. Both methods belong to the class of shrink-
454age estimators, i.e. they shrink the ordinary least
455squares solution from the directions of low data
456spread to directions of larger data spread. This
457effectively means that we can achieve the desired
458lower variance of the estimated regression coef-
459ficients at the cost of a biased estimate. Whilst with
460KPCR we project the data mainly to the principal
461components corresponding to larger eigenvalues,
462with KRR we are giving less weight to the smaller
463eigenvalues. Thus, in both cases we are faced with
464a model selection problem, i.e. selection of nonlinear
465principal components in KPCR and setting the regu-
466larisation term � in KRR, respectively. In KPCR,
467one of the straightforward model selection criteria
468is based on choosing the first p principal components
469describing the predefined amount of overall variance.
470Both methods can also be advantageous in noisy
471environments where the noise is spread in the eigen-
472directions corresponding to small eigenvalues. We
473hypothesise that in situations where these eigendirec-
474tions represent mainly the noisy part of the signal,
475KPCR can be profitable due to the data not being
476projected onto these eigendirections. We discuss the
477topic of de-noising by PCA in the next section.

4782.3. PCA De-Noising

479White additive noise will change the covariance
480matrix of the investigated signal by adding a diag-
481onal matrix, with corresponding variances of individ-
482ual noise components on the diagonal. In the case
483of isotropic noise, this will lead to the same increase
484of all eigenvalues computed from the clear signal.
485If the signal-to-noise ratio is sufficiently high, we
486can assume that the noise will mainly affect the
487directions of the principal components corresponding
488to smaller eigenvalues. This allows us to discard
489the finite variance due to the noise by projection of
490the data onto the principal components correspond-
491ing to higher eigenvalues. However, a nonlinear
492transformation of the measured signal consisting of
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493 a signal and additive noise can smear the noise into
494 certain directions. Thus, discarding the finite vari-
495 ance due to the noise can lead to a higher loss of
496 the signal information, i.e. we have to deal with the
497 balance between noise reduction and information
498 loss. We have investigated this situation in the case
499 of the noisy Mackey–Glass time series and the
500 nonlinearity �(.) induced by using the Gaussian
501 kernel. From Fig. 1 (left) we can see that the noise
502 increases the variance in directions with smaller
503 eigenvalues, but decreases the variance in the main
504 signal components. We can infer from this that a
505 more uniform smearing of the investigated signal
506 into all directions was induced. Cutting the direc-
507 tions with the smaller eigenvalues will provide a
508 level of noise reduction, however loss of information
509 in the main signal direction will also appear.

510 3. Data Sample Construction

511 3.1. Chaotic Mackey–Glass Time-Series

512 The chaotic Mackey–Glass time-series is defined by
513 the differential equation.

514

ds(t)
dt

� �bs(t) � a
s(t � �)

1 � s(t � �)10
515

516 with a � 0.2, b � 0.1. The data were generated
517 with � � 17 and using a second-order Runge–Kutta
518 method with a step size 0.1. Training data is from
519 t�200–3200, while test data is in the range t �
520 5000–5500. To this generated time-series we added
521 noise with normal distribution and with different
522 levels corresponding to ratios of the standard devi-
133
134

135
136

137 Fig. 1. Left: eigenvalues computed from embedded Mackey–Glass
138 time series transformed to kernel space. Different levels of noise
139 were added (n/s represents the ratio between standard deviation
140 of the noise and signal, respectively); n/s � 0% (solid line), n/s
141 � 11% (dots), n/s � 22% (dash dotted line). Right: comparison
142 of the eigenvalues computed from 500 (solid line) and 1000
143 (dash dotted line) data samples.
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523ation of the noise and the ‘clean’ Mackey–Glass
524time-series.

5253.2. Human Signal Detection Performance
526Monitoring

527We have used Event Related Potentials (ERPs) and
528performance data from an earlier study [20–22].
529Eight (A, B, . . ., H) male Navy technicians experi-
530enced in the operation of display systems performed
531a signal detection task. Each technician was trained
532to a stable level of performance and tested in mul-
533tiple blocks of 50–72 trials, each on two separate
534days. Blocks were separated by 1 minute rest inter-
535vals. A set of 1000 trials was performed by each
536subject. Inter-trial intervals were of random duration,
537with a mean of 3 s and a range of 2.5–3.5 s. The
538entire experiment was computer-controlled and per-
539formed with a 19-inch colour CRT display (Fig. 2).
540Triangular symbols subtending 42 minutes of arc
541and of three different luminance contrasts (0.17,
5420.43, or 0.53) were presented parafoveally at a
543constant eccentricity of 2 degrees visual angle. One
544symbol was designated as the target, the other as
545the non-target. On some blocks, targets contained a
546central dot, whereas the non-targets did not. How-
547ever, the association of symbols to targets was
548alternated between blocks to prevent the develop-
549ment of automatic processing. A single symbol was
550presented per trial, at a randomly selected position
551on a 2-degree annulus. Fixation was monitored with
552an infrared eye tracking device. Subjects were
553required to classify the symbols as targets or non-
554targets using button presses, and then to indicate
555their subjective confidence on a 3-point scale using
556a 3-button mouse. Performance was measured as a
557linear composite of speed, accuracy and confidence.
558A single measure, PF1, was derived using factor

145
146

147
148

149Fig. 2. Display, input device configuration and symbols for task-
150relevant stimuli for the signal detection task.
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559 analysis of the performance data for all subjects,
560 and validated within subjects. The computational
561 formula for PF1 was

562 PF1 � 0.33*Accuracy � 0.53*Confidence

563 �0.51*Reaction Time564

565 using standard scores for accuracy, confidence and
566 reaction time based on the mean and variance of
567 their distributions across all subjects. PF1 varied
568 continuously, being high for fast, accurate and con-
569 fident responses, and low for slow, inaccurate and
570 unconfident responses.
571 ERPs were recorded from midline frontal, central
572 and parietal electrodes (Fz, Cz and Pz), referred to
573 average mastoids, filtered digitally to a band-pass
574 of 0.1 to 25 Hz, and decimated to a final sampling
575 rate of 50 Hz. The prestimulus baseline (200 ms)
576 was adjusted to zero to remove any DC off-set.
577 Vertical and horizontal electrooculograms (EOG)
578 were also recorded. Epochs containing artifacts were
579 rejected, and EOG-contaminated epochs were cor-
580 rected. Furthermore, any trial in which no detection
581 response or confidence rating was made by a subject
582 was excluded, along with the corresponding ERP.
583 Within each block of trials, a running-mean ERP
584 was computed for each trial (Fig. 3). Each running-
585 mean ERP was the average of the ERPs over a
586 window that included the current trial plus the nine
587 preceding trials for a maximum of 10 trials per
588 average. Within this 10-trial window, a minimum
589 of seven artifact-free ERPs was required to compute
590 the running-mean ERP. If fewer than seven were
591 available, the running mean for that trial was
592 excluded. Thus, each running mean was based on
593 at least seven but no more than 10 artifact-free

152
153

154
155

156 Fig. 3. Running-mean ERPs at sites Fz, Cz and Pz for subject
157 B in the first 50 running-mean ERPs.
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594ERPs. This 10-trial window corresponds to about
59530 s of task time. The PF1 scores for each trial
596were also averaged using the same running-mean
597window applied to the ERPs, excluding PF1 scores
598for trials in which ERPs were rejected. Prior to
599analysis, the running-mean ERPs were clipped to
600extend from time zero (stimulus onset time) to
6011500 ms post-stimulus, for a total of 75 time points.

6024. Results

603The present work was carried out with Gaussian

604kernels: K(x,y) � e�(
�x�y�2

L ), where L determines the

605width of the Gaussian function. The Gaussian kernel
606possesses good smoothness properties (suppression
607of the higher frequency components), and in case we
608do not have a priori knowledge about the regression
609problem, we would prefer a smooth estimate [14,10].

6104.1. Chaotic Mackey–Glass Time-Series

611On the (noisy) chaotic Mackey–Glass time-series,
612we compared KPCR using the regressors extracted
613by Kernel PCA preprocessing with KRR. Both
614regression models were trained to predict the value
615at time t � 85 from inputs at time t,t � 6,t � 12,t
616� 18. The training data partitions were constructed
617by moving a ‘sliding window’ over the 3000 training
618samples in steps of 500 samples. This window had
619two sizes–500 samples and 1000 samples, respect-
620ively. This created six partitions of size 500 samples
621and five partitions of size 1000 samples. We esti-
622mated the variance of the overall clean training set
623and, based on this estimate �̂2 � 0.05, we repeated
624our simulations for the width L from the range
625(0.2�̂2,20�̂2) using the step size 0.01. A fixed test
626set of size 500 data points (see Section 3.1) was
627used in all experiments. The regularisation parameter
628� in KRR was estimated by cross-validation using
62920% of training data partitions for the validation
630set. In fact, to find the value of �, we did the
631cross-validation in two steps. First, the order of �
632was estimated, and then the finer structure of the
633values in the range �1 order was taken to estimate
634an ‘optimal’ value of �.
635The performance of the regression models to pre-
636dict a ‘clean’ Mackey–Glass time series was evalu-
637ated in terms of the Normalised Root Mean Squared
638Error (NRMSE). The best results on the test set
639averaged over all individual runs are summarised in
640Table 1. In Fig. 4, we also compare the results on
641the noisy time series and their dependence on the
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35

6 Table 1. Comparison of the approximation errors (NRMSE) of prediction for two different sizes of Mackey–Glass
7 training set. The values represent an average of six simulations in the case of 500 training points, and five simulations
8 in the case of 1000 training points, respectively. Corresponding standard deviation is presented in parentheses. n/s
9 represents the ratio between the standard deviation of the added Gaussian noise and the underlying time-series. For
10 KPCR computed on 500 training points, we used the first 495, 100 and 50 nonlinear principal components corresponding
11 to the case of n/s � 0.0%, n/s � 11% and n/s � 22%, respectively. For KPCR computed on 1000 training points, we
12 used the first 750, 125 and 75 nonlinear principal components.
13
1415

16 Method n/s � 0.0% n/s � 11% n/s � 22%
500 1000 500 1000 500 1000

26
2728

29 KPCR 0.038 0.008 0.307 0.280 0.443 0.41436

(0.025) (0.004) (0.030) (0.003) (0.033) (0.010)
43

44 KRR 0.038 0.007 0.312 0.279 0.446 0.40451

(0.024) (0.003) (0.032) (0.010) (0.036) (0.006)
58
59

159
160

161
162

163 Fig. 4. Comparison of the results achieved on the noisy Mackey–
164 Glass time series with the KPCR (solid) and KRR (dashed)
165 methods. Six different training sets of size 500 data points were
166 used. The performance for different widths (L) of the Gaussian
167 kernel is compared in Normalised Root Mean Squared Error
168 (NRMSE) terms. Top: n/s � 11%; bottom: n/s � 22%, n/s
169 represents the ratio between the standard deviation of the added
170 Gaussian noise and the underlying time-series.

642 width L of the Gaussian kernel. Although (from
643 Table 1) no significant differences can be noted
644 between the KPCR and KRR methods, results in
645 Fig. 4 suggest that, especially for a lower level of
646 the noise, the KPCR method provides slightly better
647 results, with a smaller variance over different train-
648 ing data partitions.
649 A relatively small width L of the Gaussian kernel
650 for which we observed the best performance of
651 KPCR on test set suggests that, for our Mackey–
652 Glass time-series prediction problem with the Kernel
653 PCA preprocessing step, mainly local correlations
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654of the data points on the attractor are taken into
655account. Increasing the value of L leads to a faster
656decay of the eigenvalues (e.g. see [23]), and to the
657potential loss of the ‘finer’ data structure due to a
658smaller number of nonlinear principal components
659describing the same percentage of all the data vari-
660ance. Increasing levels of the noise has the tendency
661to increase the optimal value for the L parameter,
662which coincides with the intuitive assumption about
663smearing out the local structure.
664The significant difference between the prediction
665accuracy on the clean and on the noisy Mackey–
666Glass time series gives rise to the question of
667whether it is possible to sufficiently reduce the level
668of noise in the kernel space due to the violation of
669the additive and uncorrelated essence of the noise
670introduced by the nonlinear transformation. This
671may potentially have a stronger effect on the main
672principal components (see Fig. 1 (left)). Therefore,
673we have to deal with the trade-off between noise
674reduction and the associated signal information loss.
675The solution of the eigenvalue problem (1) can
676be numerically unstable when we are dealing with
677matrix K of higher dimensionality (in our case,
6781000 � 1000). However, on the noisy Mackey–
679Glass time series, we observed that the best perform-
680ance of KPCR was achieved using less than 150
681main nonlinear principal components. This simply
682gives rise to the possibility of using the reduced
683training data set to compute the main eigenvalues
684and eigenvectors, and simply project the remaining
685training data points onto the extracted nonlinear
686principal components. In the following experiments,
687we compared the performance of KPCR when the
688whole training data set of size 1000 was used to
689estimate the main nonlinear principal components
690with the approach when the principal components
691were estimated from the first half of training data
692set. First, in Fig. 1 (right) we compare the main
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693 150 eigenvalues estimated from the first 500 data
694 points with these computed from the 1000 data
695 points. The small difference between both eigenspec-
696 tra suggests that the first half of the training data
697 set can sufficiently describe the subspace of the
698 feature space F which is generated by the nonlinear
699 transformation of the time series. In Table 2 we
700 compare the performance of both approaches. We
701 cannot observe any significant degradation in per-
702 formance when the reduced training data set is used
703 to estimate the main principal components. However,
704 from Table 2 we can also see that reducing the
705 number of eigenvectors used to 495 in the case of
706 the clean Mackey–Glass leads to a significant
707 decrease of the overall performance (NRMSE 0.014)
708 compared to the results in Table 1, where the best
709 performance was achieved using 750 eigenvectors
710 (NRMSE 0.008). We can conjecture that, although
711 in the case of clean Mackey–Glass using some of
712 the principal components corresponding to small
713 eigenvalues may improve the overall performance,
714 by adding noise to a time series these principal
715 components are negatively affected, and we can
716 achieve better results by their removal. However,
717 similar to the previous discussion, this leads to
718 signal information loss.
719 When extraction of a smaller subspace of the
720 nonlinear principal components is desired, we can
721 also avoid the problem of direct diagonalisation of
722 the high dimensional Gram matrix K by using the
723 approaches for iterative estimation of the principal
724 components. We have successfully used [19] the
725 expectation maximisation approach to Kernel PCA

61

62 Table 2. Comparison of the approximation errors
63 (NRMSE) of the KPCR method using all 1000 training
64 data points (KPCR1000) to estimate eigenvectors and eigen-
65 values with the KPCR method, where the first half (500)
66 of the training points was used KPCR500. In the latter
67 case, the rest of the training points were projected onto the
68 estimated eigenvectors. The values represent an average
69 of five simulations. Corresponding standard deviation is
70 presented in parentheses. n/s represents the ratio between
71 the standard deviation of the added Gaussian noise and
72 the underlying time-series. We used the first 495, 125 and
73 75 nonlinear principal components corresponding to the
74 case of n/s � 0.0%, n/s � 11% and n/s � 22%, respect-
75 ively.
76
7778

79 Method n/s � 0.0% n/s � 11% n/s � 22%
83
8485

86 KPCR1000 0.014 0.280 0.41490

(0.005) (0.003) (0.010)
94

95 KPCR500 0.017 0.282 0.41499

(0.009) (0.005) (0.008)
103
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726(EMKPCA) [24], which iteratively estimates only a
727subspace of the main principal components.

7284.2. Human Signal Detection Performance
729Monitoring

730The desired output PF1 was linearly normalised to
731have a range of 0 to 1. We trained the models on
73250% of the ERPs, and tested on the remaining
733data. The results described for each setting of the
734parameters, are an average of 10 runs, each on a
735different partition of the training and testing data.
736To be consistent with the previous results [20,22],
737the validity of the models was measured in terms
738of Normalised Mean Squared Error (NMSE) and
739the proportion of data for which PF1 was correctly
740predicted with 10% tolerance (Test Proportion Cor-
741rect (TPC)), i.e. �0.1 in our case.
742First, the performance of SVR and KRR methods
743trained on data preprocessed by Linear PCA (LPCA)
744in the input space was compared with the results
745achieved by using MLSVR and KPCR on features
746extracted by Kernel PCA3. In the next step, we
747compared the MLSVR technique trained on selected
748nonlinear principal components with the SVR tech-
749nique trained on all data points without PCA prepro-
750cessing.
751We used � � 0.01, � � 0.01 parameters values
752for SVR models. In the case of KRR, the regularis-
753ation term was estimated by cross-validation using
75420% of training data set as validation set. The same
755cross-validation strategy as applied on the Mackey–
756Glass time series was used. The results achieved on
757subject A(891 ERPs), C(417 ERPs), D(702 ERPs),
758F(614 ERPs) and H(776 ERPs) are depicted in Figs
7595–7. From Figs 5 and 6, we can see consistently
760better results on features extracted by Kernel PCA
761on subjects D and F. These superior results achieved
762using the Kernel PCA representation were also
763observed on the remaining five subjects. However,
764on subject C, the performance with the features
765selected by linear PCA was slightly better. In the
766next step, for individual subjects, we selected the
767results for a Gaussian kernel width L on which
768KRR (with linear PCA preprocessed data) and
769KPCR (with Kernel PCA preprocessing) achieved
770the minimal NMSE on the test set. In Fig. 8 a
771boxplot with lines at the lower quartile, median and
772upper quartile values and a whisker plot for individ-

1

1022
3 Although there are several approaches for selection of the ‘best’

1023subset of principal components [2], we used the criterion based
1024on the amount of variance described by the selected principal
1025components. In the case of linear PCA, we used the sample
1026covariance matrix to estimate principal components.
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173

174
175

176 Fig. 5. Comparison of the results achieved on subjects C, D and
177 F with MLSVR and SVR on data preprocessed by linear PCA
178 (LPCA � SVR), respectively. In both cases, the principal compo-
179 nents describing 99% of variance were used. The performance
180 for the different widths (L) of the Gaussian kernel is compared
181 in terms of Test Proportion Correct (TPC) and Normalised Mean
182 Squared Error (NMSE).

184
185

186

187
188

189 Fig. 6. Comparison of the results achieved on subjects C, D and
190 F with KPCR and KRR on data preprocessed by linear PCA
191 (LPCA � KRR), respectively. In both cases, the principal compo-
192 nents describing 99% of variance were used. The performance
193 for the different widths (L) of the Gaussian kernel is compared
194 in terms of Test Proportion Correct (TPC) and Normalised Mean
195 Squared Error (NMSE).
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197
198

199
200

201Fig. 7. Comparison of the MLSVR and SVR on subjects A, C
202and H. 90% of all nonlinear principal components were used in
203the case of MLSVR. The performance for the different widths
204(L) of the Gaussian kernel is compared in terms of Test Pro-
205portion Correct (TPC) and Normalised Mean Squared Error
206(NMSE).

208
209

210
211

212Fig. 8. Boxplots with lines at the lower quartile, median and
213upper quartile values and whisker plot for subjects A to H. The
214performance of KRR with LPCA preprocessing step (left-hand
215boxplots) is compared with KPCR on data preprocessed by KPCA
216(right-hand boxplots) in terms of Normalised Mean Squared Error
217(NMSE). The boxplots are computed on results from 10 different
218runs using the widths of the Gaussian kernel on which the
219methods achieved minimal NMSE on test set.
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773 ual subjects is depicted. The boxplots suggest the
774 differences between the results on subjects D to H.
775 Using the sign test and the Wilcoxon matched-pairs
776 signed-ranks test, we tested the hypotheses about
777 the direction and size of the differences within pairs.
778 On subjects D to H, the p-values �0.03 indicate
779 the statistically significant difference between the
780 results achieved using linear PCA and Kernel PCA
781 preprocessing steps. The alternative hypothesis
782 regarding the superiority of LPCA leads to p-values
783 �0.02. Although both tests on subjects A, B and C
784 did not show a statistically significant difference
785 between the results (p-values between 0.11 and
786 0.75), the alternative Wilcoxon test about the superi-
787 ority of LPCA leads to a higher p-value only on
788 subject C (A–0.12, B–0.25, C–0.88). Note that on
789 subject C, the smallest number of ERPs is available
790 (417). Figure 8 also indicates the weakest results
791 with the highest variance over individual runs. This
792 result suggests that the number of ERPs from this
793 subject were insufficient to model the desired depen-
794 dencies between ERPs and the subject performance.
795 Moreover, in this case the dimension of matrix K
796 in the feature space F is lower (209) than the input
797 dimensionality (225), and we so cannot exploit the
798 advantage of Kernel PCA to improve overall per-
799 formance by using more components in the feature
800 space than the number available in the input space.
801 In Fig. 7 we demonstrate that without the Kernel
802 PCA preprocessing step in the feature space F, we
803 did not increase the overall performance. On the
804 contrary, on subjects A, B and H the performance
805 using the MLSVR method was slightly superior. On
806 the remaining subjects the difference was insignifi-
807 cant. In the case of subject C, where the number
808 of data points is less than the input dimensionality,
809 SVR provides superior results over any of the
810 methods considered which utilise Kernel PCA pre-
811 processing.
812 In the next experiments we compared the SVR,
813 KRR and KPCR methods on a data set using all
814 eight subjects. We split the overall data set (5594
815 ERPs) into three different training (2765 ERPs) and
816 testing (2829 ERPs) data pairs. Of the training data
817 set, 20% was used for cross-validation to estimate
818 �, � and � parameters in SVR and KRR, respect-
819 ively. In the case of SVR, the direct solution of the
820 quadratic optimisation problem to find the �, �*
821 and b coefficients (4) was replaced by using the
822 SVMTorch [25] algorithm, designed to deal with a
823 large-scale regression problems. In the case of
824 KPCR, the eigenvectors and eigenvalues were esti-
825 mated using the EMKPCA approach with 30 EM
826 steps. Based on the results reported in Rosipal et al.
827 [19], we have used the 2600 main nonlinear princi-
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105

106Table 3. The comparison of the NMSE and TPC predic-
107tion errors on the test set for the model based on all
108subjects ERPs. The values represent an average of three
109different simulations.
110
111112

113Method NMSE TPC
116
117118

119KPCR (with EMKPCA) 0.1543 83.28 122

123KRR 0.1546 83.50 126

127SVR (with SMVTorch) 0.1611 82.76
130
131

828pal components. A Gaussian kernel of width L �
8296000 was used.
830Table 3 summarises the performance of the indi-
831vidual methods. We can see a slightly better per-
832formance achieved with the KPCR and KRR models
833in comparison to SVR. Together with the results
834achieved on individual subjects, results in Table 3
835suggest that on this data set, a Gaussian type of
836noise is more likely, i.e. the regression models with
837a quadratic cost function are preferable.

8385. Conclusions

839The Kernel PCA method for feature extraction has
840been investigated, and the features selected were
841used in a regression problem. On the performance
842monitoring data set, in more than half of the cases
843we demonstrated that the kernel regression methods
844with a (nonlinear) Kernel PCA preprocessing step
845provide significantly superior results over those with
846data preprocessed by linear PCA. Only in one case
847was an indication of the superiority of linear PCA
848observed; however, the sufficiency of the data rep-
849resentation in this case is questionable.
850In contrast to Trejo and Shensa [20], where one
851training (odd-numbered blocks of trials)-testing
852(even-numbered blocks of trials) data pair was used,
853in our study we created the different training-testing
854data partitions by random sampling from all blocks
855of trials. By using the kernel regression models on
856these data partitions, we achieved approximately
857twice the level of improvement in terms of TPC.
858This is a quite significant improvement on this
859biomedical application. However, in our future work,
860the same data setting and representation (discrete
861wavelet transforms of ERPs) as reported in Trejo
862and Shensa [20] will be used to make more objec-
863tive conclusions.
864Moreover, we have shown that reduction of the
865overall number of nonlinear principal components
866can reduce the noise present. Similar to the investi-
867gated Mackey–Glass time-series prediction task, this
868can particularly be exploited in a situation where
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869 the low-dimensional input data are spread in all
870 directions, and the noise reduction by projection to
871 a lower number of linear principal components leads
872 to information loss.
873 The solution of eigenvalue problem (1) can be
874 numerically difficult in the case of a high number
875 of data samples. On the noisy Mackey–Glass time-
876 series, we demonstrated that estimation of the main
877 eigenvalues and eigenvectors can be sufficient from
878 a smaller data representation. This implies the possi-
879 bility of significantly reducing the computation and
880 memory requirements, and of dealing with large-
881 scale regression problems. Moreover, in such situ-
882 ations, methods for the iterative estimation of the
883 eigenvalues can also be used efficiently [24,26].
884 On both data sets, by employing KPCR on the
885 selected nonlinear principal components, we demon-
886 strated comparable performance with KRR and SVR
887 techniques. The computational cost of this approach
888 is comparable with Kernel PCA, as the estimation
889 of the regression coefficients requires a diagonal
890 matrix inversion of the order p. Moreover, the
891 extracted regressors are linearly independent, which
892 is advantageous for subset selection techniques used
893 in linear regression. Using various strategies (e.g.
894 see [2,11] and the references therein) for deciding
895 which nonlinear principal components to delete from
896 the regression model can only improve the perform-
897 ance of the proposed KPCR model in the feature
898 space F.

899 Acknowledgements. The authors thank Professor
900 Colin Fyfe for helpful discussions and comments.
901 The first author is funded by a research grant for
902 the project ‘Objective Measures of Depth of Anaes-
903 thesia’; University of Paisley and Glasgow Western
904 Infirmary NHS trust, and is partially supported by
905 Slovak Grant Agency for Science (grants No.
906 2/5088/00 and No. 00/5305/468). Data were obtained
907 under a grant from the US Navy Office of Naval
908 Research (PE60115N), monitored by Joel Davis and
909 Harold Hawkins. Dr Trejo was supported by the
910 NASA Aerospace Operations Systems Program, and
911 by the NASA Intelligent Systems Program.

912 Appendix A

913 In Section 2.1 we assumed that we are dealing with
914 centralised data �(x) in a feature space. In practical
915 computation, the centralisation of the data leads to
916 the modification of Eq. (1) to the form [1]

917 n�̃�̃ � K̃�̃ (15)918

919 where the requirement of centralised data �(x) was
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920transformed to the change of K matrix to K̃ � K
921� 1nK � K1n � 1nK1n, where 1n is an (n � n)
922matrix of 1/n elements. Similarly, we have to change
923the (nt � n) ‘test’ matrix Ktest whose elements are
924Ktest

ij :�K(xi, xj), where {xi}nti�1 and {xj}n
j�1 are test-

925ing and training points, respectively. The centralis-
926ation of the matrix Ktest is given by K̃test � Ktest

927� 1nt
K � Ktest1n � 1nt

K1n, where 1nt
is now an

928(nt � n) matrix with the same entries 1/n.
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