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Our understanding of visual responses in the time
domain has been greatly improved by the application
of lincar systems theory. This approach treats the eye
as a lincar filter whose input is the temporal wave-
form of the stimulus and whose output is a temporal
response at some unspecilied site within the observer.
Psychophysical responses depend upon this internal
response: a typical assumption is that the observer
responds “yes. [ see it when an excursion of the inter-
nal response just meets some criterion. The great
value of the lincar approach is its power to simplify. If
the response to a very briel pulse (the impulse re-
sponse) is known, then the response to (and hence the
visibility of) any input waveform whatever can be pre-
dicted. Though the importance of the impulse re-
sponse is widely recognized, a method of deriving this
function from empirical data has not yet been devel-
oped.

The significance and clusiveness of the impulse re-
sponsc lend particular importance 1o a recent paper
by Roufs and Blommaert (1981), in which the impulse
response is derived by a new method. The paper also
merits attention because the impulse response derived
is unusual, as shown in Fig. 1. It has three phases of
alternating sign, the middie one being the largest. This
contrusts with more conventional impulse responses,
like that in the inset to Fig. 2, which typically have
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Fig. . Slope vs delay functions of three observers esti-
mated by Roufs and  Blommaert (1981). Under  their
assumptions (1) and (2) described above, this function may
be interpreted as the impulse response of the underlying
lincar filter. Note that the abscissa indicates minus delay.
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only two substantial phases, the first being largest. In
this note, T question two of the assumptions made by
Roufs and Blommaert, and show that their data arc
consistent with an impulse response of the conven-
tional sort shown in the inset to Fig. 2.

Roufs and Blommaert measured thresholds for
combinations of a “probe™ flash and a “test” flash,
both of 2 msee duration. The test was delayed relative
to the probe by various amounts, and the amplitude
of the test flash was never more than 30%, of the
amplitude of the probe. At cach delay, they estimated
from these thresholds the slope of the relation
between sensitivity and the ratio of amplitudes of
probe and test. These slope vs delay curves are shown
for three observers in Fig. 1. Roufs and Blommaert
then make two assumptions which permit them to
interpret the slope vs delay curve as the impulse re-
sponse itself, but backwards in time and delayed by
an unknown amount.

The (wo assumptions made by Roufs and Blom-
maert are:

(1) when test and probe are brief pulses, and when
the test amplitude is less than or cqual to 30%; that of
the probe, then the extremum of the response always
occurs at the same point in time, regardless of the
delay between test and probe; and

(2) under the conditions noted, probability sum-
mation over time will have negligible cllect on the
visibility of the stimuli.

The first assumption can never be precisely true,
since it requires that the derivative of the impulse
response be constant at every point in time. No physi-
cally realizable response (except no responsc at all)
satisfies this condition. For some impulse responses,
however, this condition is approximately true, and
the error introduced by the approximation may be
small.

The more serious objection is to the second
assumption. This may be most casily scen by con-
sidering the results predicted when probability sum-
mation over time is included or not included in the
model. To do this we nced a hypothetical impulse
response. Although a method of estimating the im-
pulse response has yet (o be developed, we do know
one empirical constraint upon its form. The modulus
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Fig. 2. The cireles show sensitivities to sinusoidal modu-

lation of the contrast of a 1 circular stimulus on a dark

background, as measured by Rouls and Blommaert (1981).

The smooth curve through the points is the amplitude re-

sponse corresponding to the hypothetical impulse response
shown in the insct.

of the Fourier transform of the impulse response is
the amplitude response, which specifics the amplitude
with which sinusoids of different frequencies pass
through the system. Thus the amplitude response ¢cor-
responding 1o a hypothetical impulse response should
resemble the sensitivity of the observer 1o sinusoids of
various  temporal  frequencies.  Examples  of  this
approach may be found in Kelly (1971), Roufs (1972)
and Watson (1981).

A further example of this technique is shown in Fig.
2. The points are amplitude sensitivity measurements
made by Roufs and Blommaert (1981) for their 17 disk
target at an adapting illuminance of 1200td. The
smooth curve through the points is the amplitude re-

sponse corresponding (o the impulse response shown
in the insct to Fig. 2. This impulse response is given
by

h(t) = u(O](1/4.94)8¢ 1494
“(1/12)(1/6.58)%¢ HOSET (1)

where 1 is in msee and where wlt) is the unit step
function. This impulsce response is at least plausible
under Roufs and Blommuaer(s conditions, since it gen-
crates an appropriatc amplitude response. This im-
pulse response is similar to those derived by Kelly
and Roufs from data collected under similar con-
ditions.

To predict the effects of probability summation
over time we may make use of a simple model based
upon obscrvations by Quick (Quick, 1974; Watson,
1979). In this model a temporal stimulus /(1) will be at
threshold when

«—f S h(o) | dr 2)
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where * indicates convolution and f is a parameter
which usually reflects the slope of the psychometric
function. A useful feature of this formula is that it can
accommodate both the case of probability summation
and the case of no probability summation. For no
probability summation, the parameter f# is sct to a
large value {c.g. 100). To include probability sum-
mation, f# is cquated to the slope parameter of the
psychometric function. Watson (1979) published dis-
tributions of estimates of f# for two observers in
yes/no  experiments. Of 104 estimates, 89  were
between 3 and 7. Roufs (1974) tabulated estimates
from the data of seven different investigators (whose
psychophysical methods were not stated). These
values of ff ranged from 2.7 to 4.6, with a mcan of 3.5.
In the paper under discussion, an average ff of 6.6 is
reported (“Crozier quotient” of 0.175), but this is aty-
pically high. These cstimates appear to be derived
from very small numbers of trials (an average of 33
trials/psychometric function), and are likely to be
biased upwards (Nachmias, 1981). Finally, it should
be noted that estimates of i covary with the false
alarm rate (Nachmias, 1981), so that large individual
differences may be expected in yes/no experiments.

Quick (1974) has noted that a model of this sort
may reflect nonlincar integration, rather than prob-
ability summation of the filter output. For the pur-
pose of this argument, cither possibility may be enter-
taincd. Whatever its basis, this model has been found
to give a good account of temporal summation (Wat-
son, 1979).

The slope vs delay curves predicted by cquations 1
and 2 for scveral values of f are shown in Fig. 3.
Contrary to assumption 2, including probability sum-
mation makes a large difference. Without probability
summation (ff = 100). the predicted curve is two
phased. and closcly approximates the assumed impulse
response. With probability summation (ff between 2
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Fig. 3. Slope vs delay curves predicted by the impulse re-

sponsc of Fig. 2. Predictions were made with various

values of ff. No probability summation is represented by

f = 100, probability summation by values between 2 and
7.
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Fig. 4. An explanation of the cffect of probability sum-
mation on the slope vs delay curve. Responses to the probe
and to tests at three different delays are shown. The total
response at cach delay would be the sum of the probe
response and the relevant test response. Without prob-
ability summation, all three mixtures will be detected at
approximately the peak ol the probe response. henee the
test can have an cftect only by altering the value at this
peak. At a delay of 50 msec, it will reduce this peak, at
0 msec it will raise the peak. and at 50 msee it will have
no cffeet. The resulting slope vs delay curve (Fig. 3,
[ - 100) reflects this outcome. With probability sum-
mation, every point in the response has an cffect, since cach
has some probability of exceeding threshold. As a result
the test delayed by 1 50 msee reduces the visibility of the
mixture. since its positive phase subtracts from the negative
phase of the probe response. Thus when probability sum-
mation is in action, test stimuli have an effect both when
they foliow and when they precede the probe. This out-
come is also illustrated in Fig. 3 (ff < 100).

and 7), the slope vs delay curve is triphasic, and does
not equal the impulse response. In other words, when
probability summation does take place, a conven-
tional biphasic impulse response like that in Fig, 2
can generate a slope vs delay function like those
found by Roufs and Blommaert. Figure 4 provides a
qualitative explanation of the discrepancy between
predictions made with and without probability sum-
mation.

The agreement between these predictions and the
data of Roufs and Blommacrt could be improved by
more deliberate selection of the impulse response. But
since both data and predictions are subject to con-
siderable uncertainty, it scems wiser to be content
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with a qualitative point: when probability summation
is included, the slope vs delay curve does not cqual
the impulse response, and in particular, a biphasic
impulse response may give rise to triphasic slope vs
delay data. Since there is ample cvidence in favor of
probability summation (or nonlincar integration) over
time (Roufs, 1974; Watson, 1979), and no cvidence
against it, there scems little justification for interpret-
ing data like those in Fig. 1 as the impulse response.
The data are at least as consistent with an impulse
response like that shown in Fig. 2.
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