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PROBABILITY SUMMATION OVER TIME
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Abstract - Frequency-of-seeing and sensitivity duration curves were collected for temperal signals of
limited spectral extent. A comparison of the two sorts of data suggests that a stimulus is detected
whenever the excursions ol its lincarly filtered, noise-perturbed temporal waveform exceed some fixed

magnitude.

INTRODUCTION

The scnsory response to light persists in time. This
fact obliges us 1o understand how the temporally dis-
tributed effects of visual stimulation collectively deter-
mine threshold, A classical solution to this problem
has been to suppose that the eye integrates the light
signal over some interval of time, the eritical duration.
The light is visible whenever the integral exceeds
some [ixed value, The linding which motivated this
idea was the apparent reciprocity between intensity
and tine for stimuli at threshold (Bloch, 1885; Gra-
ham and Margaria, 1935), but this result is equally
well accommaodated by a more gencral modei. This
model supposes the eye lo operate in the vicinity of
threshold as a lincar temporal filter followed by a
threshold mechanism, which responds only when the
excursions of the filtered sipnal exceed some lixed
magnitude (De Lange, 1952, Kelly, 1961; Sperling
and Sondhi, 1968; Roufs, 1972, In tbis peak-or-trough
detector, temporgl  summation  occurs as  a  con-
scquence of the integrating action of the filter. In yet
another model the lincar filter is followed by a squar-
ing device, and the filtered, squared signal is inte-
grated over some finite interval, In the version of this
power integrator proposed by Rashbass (1970) the in-
tepration interval is about 200 msee; in that of Koen-
derink and van Doorn {1978) it is about 500 msce.

A feature common 1o all of these proposals is that
they are deterministic: they do nol attempt to rep-
resent the probabilistic nature of detection. We mnay
imagine the variability of detection to be due to
“noise” in the visual process. If the time scale of the
noise Auctuations is long relative (o that of the maodel,
then it can properly be neglected, If the two scales
are comparable, however, then the intrusion of noise
may render the above models incapable of correctly
predicting the visibility of long as well as short
stimuli.

One way in which noise may influence the visibility
of a temporally extended signal is through probability
summation over time, 'To describe this process it is
convenient to treal the continuous time interval con-
taining the signal as a sequence of bricf, finite inter-
vals, or instants. In order 1o properly represent the

' Present address: Physiclogical Laboeratories, Univer-
sity of Cambridge, Cambridge (B2 3EG, England.
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signal waveform, the duration of cach instant must
be [ess than half the period of the highest frequency
present in the signal. The presence of noise cnsures
that within cach instant there is some probability that
threshold will be exceeded, and so the overall prob-
ability that the signal is dectected must take inlo
account all of these momentary probabilities. Let P;
be the probability that threshold is exceeded during
the instant beginning at time ¢, Il the fluctuations
of the noise are sufficiently rapid (if the autocorrela-
tion function of the noisc process i sufficiently nar-
row), then these probabilities will be independent
from instant to instant. Then supposing that the sig-
nal is detected if and only if threshold is exceceded
in at least onc instant, the probability of detection,
P, will be

P:lf]’[(l—Pl-). (1}

One consequence of equation 1 is that for a stinu-
lus for which at least some P; are not zero, the prob-
ability of detection will continue to rise with increases
in duration for as long as the signal may be pro-
longed. The same cannot be said for plausible ver-
sions of the models described above.

It will be uscful to express this argument in quanti-
ative terms. T'o do this we may make use of a model
claborated by Watson and Nachmias (1977), It resem-
bles in its essentials models suggested by Stotter and
Robson (1978), Graham (1977 and Tolhurst (1975)
to describc probability summation over various
dimensions of visual and auditory stimuli, The model,
as sketeched in Fig. 1, consists of a lincar filter, an
additive nolse source, a threshold device, and a guess
generator. An OR gate combines the outputs of the
guess generator and threshold device. The output of
the lincar filter 1o an input f{t) is ¢(¢). The threshold
device is a non-lincar clement which responds with
the value 1 whenever its input cxeceds some threshold
value, positive or negative. The guess gencralor re-
sponds with a | with probability y on each trial, inde-
pendent of what happens in the rest of the model
The OR gate responds with a |, and the observer
reports “yes, 1 detcet the stimulus™, whenever cither
of its inputs is a 1.

Two obstacles must be passed before the meodel
may be used lo predict the visibility of actual tem-
poral wavcforms. First, tbe manner in which the



516 ANDREW B. Warson

TEMPORAL SIGNAL
LF LINEAR FILTER
(5:»—@ NOISE
10 THRESHOLD DEVICE
G GUESS GENERATOR
OR OR GATE
OBSERVERS  RESPONSE

Fig. |. Diagram of a model for the deteetion of temporal
waveforms. Its con.ponents and properties are described
in the text.

noisc, threshold device, guess generator and OR gate
act to determine the detectability of a filter response
g{t) must be quantitatively described. Second, the
naturc of the lincar filer must be defined, so that
g(f) may be obtained from f(r).

The first task is simplified by adopting the formula

Pr= 1 exp[—|g(t)|"] (2)

to describe the probability that the threshold device
has an output of | within the instant beginning at
time ¢;. This expression is one version of a distribution
function studied extensively by Weibull (1951).
Scveral of its practical and theoretical virtues have
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Fig. 2. Psychometric function described by equation 2.

Each curve describes for the value of # indicated the prob-

ability that the threshold device will respond as a function
ol the instantaneous magnitude of the response ¢(f).

been noted by Quick (1974) and Green and Tuce
(1975). Some cxamples of the function are shown in
Fig..2. Fach incorporates au different value of fi, the
parameter which controls the slope of the function.
This particular function has been chosen both
because it is mathematically convenienmt and because,
as will be demonstrated, it provides a very good de-
scription ol experimentally determined psychometric
functions.

The observer will respond “no”™ only il both the
threshold device and the guess generator fail to re-
spond during the observation interval. 1f the values
assumed by the noisc are independent from instant
to instant, then the probability of a “yes”, P, may
be written

P

i

= (1= Texp—lg(tl"}

1 - (1 —exp

i

- \g(fs)\f‘J : {3)

Tt is sometimes convenient to consider the instants
to be of infinitely small duration, in which case we may
pass 1o the integral

P=1-(- NCXD[A*fV mﬁﬁﬁdlk (4)

The first obstacle has been clecared. The second
problem, of deriving the filter responsc g (1) from the
input waveform f(t), amounts 1o the problem of deter-
mining the transfer function of the filter, For the cye,
this problem has as yet no gencral solution, The func-
tion, particularly its phase component, cannol be
measured  without elaborate assumptions. When
measurements are obtained, they arc found to vary
with the spatial waveform and adapting luminance.
However, a solution that is sufficient for the purposes
of these experiments may be oblained by assuming
that the transfer function has constant gain and linear
phase over the region of frequency occupied by the
input waveform f(r), Where this is so, the filter output
will simply be the input delayed in time by some in-
terval © and scaled in amplitude by some constant
5. That is:

g0 = sf{t + 7). (5

This assumption can approximate the truth only
if the signal f(f) s designed in such a way as to
occupy & very narrow frequency region. An unfortu-
nate characteristic of such a signal is that it will
occupy an extended region of time, and thus not be
amenable to presentation in discrete trials. We may
compromise with a signal which is relatively localized
in both time and frequency:

J(t) = aexp(—1*/a?)sin(2nf). (6)

This frequency burst is the product of a Gaussian of
amplitude a and time constant ¢ and a sinusoid of
carrier frequency f,. Scveral examples are shown in
Fig. 3. For each, the frequency spectrum is approxi-
mately Gaussian, and declines to 1/e (about 37%) of
its maximum in 1/(rne¢) Hz.

The behavior of the model may be compared to
data in two quite different ways. First, by suitable
combination of equations 4, 5 and 6 we may easily
calculate the probability of a “yes™ response to any



Probability summation over time

517

8 Hz %[Wﬁ e
AHz ——MJ\/\ﬁ.. .

200 rnsec

A
A

700 msec

Fig. 3. Fxamples of the temporal waveforms used in the experiments, Each frequency burst is the
product of a sinusoid whose frequency is noted at the left, and a Gaussian, whosc time constant
is indicated below,

given signal amplitude, «. This probability is a func-
tion of the parameters s, y and ff, whosé values may
be manipulated in order to maximize the correspon-
dence of predicted and oblained psychometric func-
tions.

The second comparison touches more directly upon
temporal summation. Examination of equation 4
reveals that, for all stimuli at some fixed probability
of detection,

o f lg ()" de (7)

where ¢ 15 a constant. In words, equation 7 asserls
that for all stimuli at threshold, the integral of the
absolute valuc of the response, raised to the power
B, will be a constant.

A remarkable and fortunate feature of this expres-
sion is that it includes as special cases three of the
deterministic models described above. The peak-or-
trough detector is quantitatively equivalent to the
probability summation model when there is no noise.
This latter circumstance may be represenled by a
psychometric function that is infinitely steep, that is,
by setting B equal to oo (in practice a § of 40 is

suflicient). The power integrator is described by equa-
tion 7 with a f§ of 2, and with finitc limils to the
intcgral. In Rashbass” version, the limits are plus and
minus 100 msec; in Koenderink and van Doorn’s they
are plus and minus 250 msec, _

Since the models which equation 7 may represent
are varieties of temporal summation, it is natural to
ask how they behave as a signal is lengthened in time.
The models are resiricted to signals described by
equation 6, so the duration of the signal must be
varied by manipulating o, the time constant of the
Gaussian envelope. Furthermore, 4 cannot be made
too small, or equation 5 will again be violated. Sub-
Jject to these constraints, we may calculate the vari-
ation in sensitivity that each model predicts for vari-
ations in g, Examples of such calculations are shown
in Fig. 4. In (a) the integration has been performed
without limit, in (b) the limits are plus and minus

_ 100 msec.

For finite integration, sensitivity increascs apprecia-
bly only for values of & ranging up to the duration
of the integration interval. For integration without
limits, sensilivily continues 1o increase without
asymptote as o is made larger. Furthermore, this in-
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Fig, 4. Sensitivity to a frequency burst as a function of the time constant ¢. Calculations are based
on Equ 7 without integration limits (a), or with limits of plus and minus 100 msce (b}, The parameter
is the exponent f§.
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Fig. 5. Sclected resulis of experiment 1. The ordinate expresses propertion of “yes™ respenses, the
amplitude of the freguency burst relative to its threshold. The triangles show the false alarm

rate. The continuous curves are the best fitting versions of equation 9. Panel (a): observed AM; panel
(b): obscerver RP.

crease is very nearly lincar when expressed on log-
arithmic axes, the slope being cqual to L/ (the curves
depart from tincarity only when af,/f is small). Notice
that the technique of limiting the frequency extent
of the signal effectively bypasses the integrating action
of the lincar stage of the model, so that what temporal
summation does nceur is duc to probability summa-
tion, Thus in the case of # == 40, where probability
summation does not occur, very little temporal sum-
mation takes place.

These results encourage us 1o perform the following
sequence of experiments. First, thresholds may be
measured for frequency bursts varying in o. Examin-
ation of these results will indicate whether any of the
curves of Fig. 4 are an adequate description of the
data. If the relation between the logarithms of sensi-
tivity and o appcars linear, then the most appropriate
vadue of f# may be estimated. The estimate of f
oblained in this way may then be compared to that
yielded by fitting the psychometric function expressed
by cquation 4 1o the data.

METHODS

Two cxperiments were performed. In both, the spatial
paticrn was a 4 ¢/deg sinuseidal grating, generated by a
PDP 11/10 computer on the face of a Tektronix 604 CRT
with a frame rate of 200 Hz by z-axis modulation of a
high frequency raster. In cach frame, a pre-calculated list
of 12 bit numbers representing the spatial wuveform was
read from the computer to a digital-analog-converter
(DAC)at a rate of about 6 pseo/number. The unattenuated
contrast of the pattern in cach frame wus determined by
a number from a sceond pre-caleulated list of 10 bit
numbers, representing the temporal waveform as described
by equalion 6, sampled at intervals of 5 msec, read to the
digital mput of & sccond, multiplying DAC. The analog
input to the multiplying DAC was provided by the output
of the first DAC. The cutput of the muitiplying DAC was
applicd (o the z-axis of the CRT, aller passing through
a computer controlled atienuator,

The screen was viewed binocularly with natural
pupils and a chin rest from a distance of 228 cm. It
subtended 2.57 horizontally and 1.97 vertically, and
was surrounded by an 8" diameter circular surface

? By convention, decibels of contrast are given by the
formula dB(x) = 20 tog, o(x).

of about the same color and luminance (approxi-
mately 15cd/m?). Two obhscrvers were uscd. Both
were emetropic and both were naive as to the pur-
poses of the experiment.

in cxperiment 1, psychometric functions were
obtained for temporal waveforms in which ¢ was
constant at 400 msee while the temporal frequency
ranged from | to 20 Hz. Each waveform lay within
an interval of 2sec, centered on the midpoint, and
was accompanied by a tone of cqual duration. Within
a session, a minimum ol 50 presentations were made
al cach of four amplitudes of two temporal frequen-
cies. (Stimuli containing both temporal frequencies,
not relevant to the present cxperiment were also
present in each session) An equal number of blank
trials were also included,

In experiment 2, a staircase procedure was used
to determine thresholds concurrently for temporal
waveforms whose value of ¢ ranged from 100 to
700 msee in steps of 100msec. The temporal fre-
quency was fixed within a scssion at cither 3 or 8 Hz.
Each waveform occupicd an interval of 3sec. The
staircase proceeds for each individual stimulus by
reducing its amplitude by one logarithimic “step™ fol-
lowing cach “yes” response, and increasing it by one
step following each “no”. A step size of 3dB is used
until the first instance in which the response changes
from “yes” to “no”, or “no” 1o “yes” {a reversal).*
Subsequently, a step size of 1 dB is used. Upon com-
pletion of at least 30 reversals, threshold for cach
stimulus is computed by taking the average, in dB,
of the midpoints between all amplitude pairs resulting
in reversals, excepting the first reversal. Two sorts of
catch trial, a blank and a stimulus 10dRB above the
current estimate of threshold, cach occur with a prob-
ability of 0.05. An incorrect response to either is sig-
naled by 4 sequence of feedback tones. Responses to
catch trials have no cffect upon the progress of the
staircase and do not enter into the calculation of

threshold.

RESULTS
Experiment I

Two data sets selected from the results of Experi-
ment 1 are shown in Fig. 5. The abscissa in cach
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Fig. 6. Distribution of estimates of the purameter i, Results
for the lwo observers are shown separately. See text for
details.
panel indicates amplitude of the temporal waveform
in dB, relative to an amplitude at which approxi-
malcly 63% are reported 1o be seen. The triangular

symbols show false alarm rates,

Wec wish to compare these data to the behavior
of the model, as described by equation 4. To express
the sensitivity parameter of the model in familiar
units, we substitute

o= s“ jl bexp (— 1% /a?) sin (2rf,0){f dt] T

to arrive at

P =1 (1~ yprexp[—(wo)]. )

The parameter o, the “threshold amplitude™ is now
the amplitude at which the probability of a response
from the threshold device is 0.63. The continuous
curves in Fig. 3 are described by equation 9 and arc
fitted to the data by a procedure described in the
appendix. This procedure yields maximum likelihood
estimates of the parameters «, f and v, as well as
a y? statistic (d.f. = 2) describing the quality of [t
The average ¥* for AM was 1.57, for RP, 1.82. The
data sets of Fig. 5 were selected in order to show
the quality of fit indicated by these averages. In (a)
the statistic is 1.59, 1n (b) it is 1.82. In cach figure
the fit approximates the average of all fits for that
observer. In general, the fits are quite good. Only
two out of 104 are rejected at the 0.05 level.

The distribution of estimates of the parameter ff
which are obtained from the fitting procedure is
shown in Fig. 6. Each unshaded bar indicates the
number of data sets yielding an cstimate of # between
the specified limits. The majority of both observers’
estimates lic between 4 and 6. The distribution for
AM appears shifled 1o somewhat higher values than
that for RP. The shaded bars in Fig. 6 will be de-
scribed later.

In Fig. 7 sensitivity (the (inverse of the estimate
of the threshold amplitude 2} is plotted as a function
of temporal frequency for both observers. FFor both,
sensitivity is approximately uniform until it begins to
decling in the neighborhood of 8 Hz. The various
arrows insel into Fig. 7 will be discussed below.

Experiment 2

The results of Experiment 2 are plotted in Fig. 8.
Each pancl contains the amplitude thresholds col-
lected during a single session. Observer and temporat
frequency are indicated.
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Fig. 7. Sensitivity to frequency bursts as a function of temporal frequency for the two observers,

The horizontal arrows show the approximate spectrum width of a burst of the specified time constant,

centered about 8 Hz. The vertical arrows show the variation in sensitivity that might be cxpected
over these frequency ranges.
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It is apparent that sensitivity continues to improve
up to the largest value of ¢ used. This result is incon-
sistent with a power integrator having an integration
interval of 200 mseo (Rashbass, 1970). Furthermore,
with the exception of the peints at o = 100 msec for
a frequency of 8 Hz, the thresholds appear to lic upon
a straight line as prescribed by equation 7 without
integration limits.

Equation 7 may only be properly applied where
the transfer function has constant gain over the spec-
trum of the signal. It is plausible to supposc that the
thresholds for stimuli in which ¢ = 100 msec depart
frem the model predictions because their spectra
extend too far in a region in which the transfer func-
tion gain is not in fact constant. The data of Fig. 7
demonstrate that sensitivity does indeed vary in the

neighborhood of 8 Hz. The horizontal arrows show

the approximate extent over which the spectra for
¢ = 100msec (filled arrows) and 200msec (open
arrows) fall to 37% of their maxima. The vertical
arrows show the variation in sensitivity which may
be expected over this frequency range. For the longer
signal, the variation is about 3dB, for the briefer,
about 6dB,

To the extent that the above hypothesis is correct
we are justified in fitting a straight line to the points
for a > 100 msec, The inverse of the slope of this line,
which by the arguments above may be taken as an
cstimate of fi, can be simply obtained by linear regres-
sion in the log-log space. These estimates arc indi-
cated by the shaded bars in Fig. 6. Clearly, the esti-
mates oblained from the (wo experiments agree very
well.

ANDREW B, WATSON

DISCUSSEHON

.To summarize the argument: a model has been
constructed to describe the effects of probability sum-
mation over time. The essence of the model is con-
tained in two equations: equation 4, which describes
the psychometric function, and equation 7, which de-
scribes the influence of duration upon sensitivity,
Equation 7 also describes as special cascs three deter-
ministic models: the peak-or-trough detector and the
power integrator with long or short integration inter-
val. In the probability summation model the par-
ameter f# in equation 7 must have the same value
as the § in cquation 4. In the peak-or-trough detector,
the value of f# in equation 7 must be, in theory, in-
finite, though in practice a value greater than 40 is
sufficient. The power integrator requires that the value
of fin equation 7 be 2, and that imits to the integral
be introduced. .

The data collected demonstrate that the value of
B in equation 7 does correspond to that in equation
4, that it does not equal 2 and is less than 40, and
that equation 7 best describes the tesults when the
integration interval is at least 700 msec in duration.
In short, the data reported here are consistent with
a model incorporating probabilily summation over
time, and are inconsistent with several models which
do not incorporate this process. '

The weight of this conclusion is borne by the pre-
dicted and obtained correspondence between the two
estimates of fi. Each estimate, however, is subject to
error, If the noise is corrclated from instant to instant,
then less advantage will be gained by extending the
signal in time. The f estimated by experiment 2 would
then exceed the true value, If the noise consists, in
part, of variations so slow as o occur belween indivi-
dual trials or groups of trials, as suggested by Hallet
(1969), then the cstimate of f that is derived from
experiment 1 will be less than that obtained from ex-
periment 2. It is intercsting that both of these depar-
tures from the simple predictions of the model suggest
that the # of experiment 2 should exceed that of ex-
periment 1, whereas the data, if anything, tend to indi-
cate Lhe opposite. Tt is possible that the methods of
data collection and analysis used in experiment | pro-
duce an upwardly biased estimate of ff (as is suggested
by simulations of a related psychophysical procedure),
but an understanding of this and other detailed pre-
dictions of the model may requirc a morce sophisti-
cated treatment of the time properties of the noise.

It must also be recognized that the correspondence
between the two estimates of § may be fortuitous. A
model in which the filter is followed by a power law
transformation and integration over an extended period
would provide a comparable result (Rashbass, 1976).

Previous data which reveal a continuing increase
in sensitivity as a signal is prolonged beyond the pre-
sumed critical duration have been collected by Nach-
mias (1967), Tolhurst (1975), and Roufs and van Stuy-
venberg (1977). Despite differences in spatial and tem-
poral waveforms, in cach case the results display a
rate of increasc of sensilivity comparable Lo that
obtained here. In the two more recent works it is
asserted that the result is duc to probabilistic effects,
and Tolhurst supports the assertion with a qualitative
argument.
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In past treatments of probability summation over
time the calculation has been performed over a finite
collection of discrete cvents (Roufs, 1974). One virtlue
of the present approach is that it allows an approxi-
mate description of probability summation over a
continuous waveform. This makes it possible to apply
the model to the visibility of more complex temporal
stimuii; for cxample, waveforms which are not ade-
quately described in terms of the number of their
peaks. One interesting stimulus of this sort to which
the model has heen applied is that containing several
quite different frequencics, The results of this investi-
gation will be reported in a future publication.
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APPENDIX

This appendix describes the procedure that has been
used to fit frequency-of-secing data to a psychometric func-
tion of the type proposed by Quick (1974), using a distribu-
tion function described by Weibull (1958). The procedure
has been implemented in a computer program named
QUICK.

The data are in the form of number triples {a;, n; x),
i=1,2,..., 1, wherc a; is the amplitude of the ith stimulus,
n; the number of presentations, and x; the propsrics of
yes responses. We suppose that the number of yes re-
sponses, #x,, is sampled from a binomial distribution of
purameters my; and Py that is,

gy = ("a ) (Pl — Pyt ™ nxg =,
- (AD
clsewhere,
We wish to maximize the likelihood function for the
data samples,
I = fl Sl 1), (A2)

It is equivalent Lo magimize the logarithm of this function,

log L. = l](:g( ' ) + nx; log (P)
i By

byl — x) log il — )] (A3}

Collecting separately those terms which depend upon the
parameters ; and those which do not, we write

R n

log( i )J + M
. mix;

M =¥ mlxdog(P) - (I = x)log(1 - PYL. (AS)

loght =%

i

(Ad)

where

It 15 now sufficient {0 maximize M as a function of the
I parameters /.

The maximization is performed under two hypotheses.
In the first, I, we assume nothing about the P, Fach
is free to assume its most likely value relative to the x,.
Since the maximum likelihood estimate of the parameter
P, of the density described by cquation Al is simply x,
the maximum of M under H, is given by

My = ¥ mlxlog(x) + {1~ x)log(l — x)].

i

(A6)

(In the evaluation of equation A6 it is occasionally
necessary to make usc of the fact that lim [xlog(x)] = 0.
- e 220
In the sccond hypothesis, H,, we assume that the P;
are given by

Pp=1—(1 - pexp[~iajm) (AT



wn
4
]

Note that under this constraint the I paramcters P; are
reduced to the three parameters =, i and . An expression
for M| may now be obtained by substituting equation A7
into equation A5, The muximum of M, i then found by
means of STEPTT (Chandler, 1965), a general purpose mini-
mization routine. The values of «, # and 7 that provide
the maximum value of M are then the maximum likelihood
cstimates of these parameters.

The degree (o which equation A7 adequalely represents
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the data is assessed by comparison of the maxima of M
under the two hypotheses. Specifically, the statistic

=2l0p(L /Lol = 2[My — M ]

may be shown lo be asymplotically x* with degrees of
freedom equal to the difference in the number of par-
ameters in the two hypotheses, that is, I — 3 (Hocel, Port
and Stone, 1971).



