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ABSTRACT

f
q

A method is described for reducing the visibility of artifacts arising in the display o
uantized color images on CRT displays. The method is based on the differential spatial sen-

v
sitivity of the human visual system to chromatic and achromatic modulations. Because the
isual system has the highest spatial and temporal acuity for the luminance component of an

-
i
image, we seek a technique which will reduce luminance artifacts at the expense of introduc
ng high-frequency chromatic errors. In this paper we explore a method based on controlling

-
n
the correlations between the quantization errors in the individual phosphor images. The lumi
ance component is greatest when the phosphor errors are positively correlated, and is minim-

i
ized when the phosphor errors are negatively correlated. The greatest effect of the correlation
s obtained when the intensity quantization step sizes of the individual phosphors have equal

y
s
luminances. For the ordered dither algorithm, a version of the method can be implemented b
imply inverting the matrix of thresholds for one of the color components.

H

1. INTRODUCTION

uman color vision is made possible by the initial encoding of the visual stimulus by the

b
three photosensitive cone pigments in the retina. These signals are transformed and processed
y subsequent neural stages in ways that are still not completely understood; empirical data

-
e
does suggest, however, that certain special transformations are likely to occur. These infer
nces are based in large part upon the fact that the spatial and temporal response of the visual

system varies with the color composition of the stimulus.
The differences in the visual system’s responses to chromatic and achromatic modula-

d
b
tions are clearly illustrated by differences in the contrast sensitivity function, as was measure
y Kelly . Kelly found that sensitivity to stationary luminance modulation had a band-pass

c
1

haracter, with a broad peak of sensitivity occurring at a spatial frequency of around 2 cycles

l
per degree. Sensitivity to equiluminant chromatic modulation on the other hand was more
ow-pass in nature, with the peak occurring at approximately 0.5 cycles per degree, followed

-
a
by a sharp decline in spatial sensitivity for higher spatial frequencies. There are also compar
ble differences in temporal sensitivity.

Results concerning spatial sensitivity are only a part of the body of evidence indicating

t
that the linear combination of the cone signals known as "luminance" is treated specially by
he visual system. The evidence concerning the particular combinations which encode the

t
s
remaining color information is more equivocal; it is widely believed, however, that the firs
tep is to form two color opponent signals: a red-green signal based on the difference between



t
the excitations of the red and green cones, and a blue-yellow signal based of the difference of
he blue cone signal and the luminance signal. Because of the low density of blue cones in

the retina , the blue-yellow system has particularly poor spatial resolution.2

In this paper we examine the question of whether these differences in sensitivity based
n

a
on color can be exploited to improve the fidelity of quantized images which are reproduced o

CRT display. In particular, we are interested in reducing the luminance error, even at the
l

t
expense of introducing substantial additional chromatic error, since it is the luminance signa
o which the visual system is most sensitive at the high frequencies where most quantization

procedures attempt to concentrate the noise.

2. THEORY

2.1. Applying ordered dither to color images
We will examine the problem of minimizing the luminance component of quantization

errors in the context of the halftoning method known as ordered dither . Although this3,4

e
p
method has some drawbacks, it has the advantages of simplicity and speed; the operations ar
erformed independently at each pixel in the image, so the algorithm may be implemented in

e
i
parallel. We consider the case of binary quantization, i.e., where each pixel in a monochrom
mage is represented by either black or white.

The algorithm is implemented as follows: the image is first divided up into subregions,

s
or "cells." The cell size is a parameter which may be tuned to achieve a tradeoff between
patial and intensity resolution. Within each cell, a matrix of values is added to the

.
D
corresponding matrix of pixels, which are then quantized using a simple fixed threshold

ifferent design rules are used to construct the dithering matrix depending on the final output
device; different types of matrices are usually used for printers and CRT’s.

When we apply this method to the dithering of color images, the simplest approach is to

i
treat the red, green, and blue component phosphor images as independent monochrome
mages, dither each one, and finally combine the three quantized component images to form a

t
quantized composite image. With a palette of eight colors, (three bits per pixel), the alloca-
ion of one bit to each phosphor is the only palette choice which allows the entire monitor

l
i
gamut to be reproduced. When a larger palette is used, it is possible to achieve substantia
mprovements by analyzing the actual content of the target image; this involves significant

-
i
preprocessing, however, so in applications where speed is important, such as interactive view
ng of a large number of different images, it is convenient to work with a fixed palette which

s
allows the phosphor component images to be processed independently. In following discus-
ion, we will only consider palettes of this type.

The appearance of a single monochrome image which has been quantized by ordered
.

S
dither will not be greatly affected if we rotate or flip the dither matrix prior to quantization

uch transformations have a large effect only on the high frequency structure of the quantiza-

p
tion noise, but do not substantially affect the reproduction of spatial frequencies having
eriods of many cell sizes. Given the arbitrariness of the choice of the dither matrix for a

r
d
single monochrome image, we can ask the question of whether we should choose identical o
ifferent matrices for quantizing the component phosphor images that make up a color image.

2.2. Multi-level quantization
It is easy to generalize the method to multi-level quantization as follows: if we desire a

final image having N uniformly spaced levels, we first quantize the image to N-1 levels by



simply thresholding each pixel, rounding down to insure that no pixels are assigned to the
-

g
highest level. We then form an error image by subtracting the quantized image from the ori
inal. Because we have rounded down to quantize, the error is strictly positive, ranging from

e
0 to the quantization step size. We can then perform ordinary binary ordered dither on the
rror image to provide an additional bit of pixel information. This one bit dithered image is

then used to promote pixels in the quantized image to the next highest level.
The main drawback of this technique is that the use of a uniformly quantized grey scale

a
makes the dither pattern selectively more visible in dark regions of the image. It has the
dvantage, however, of simplicity and speed.

m2.3. Analysis of an idealized two phosphor syste
To gain some insight into the general problem we will first analyze a simple idealized

n
case consisting of a two phosphor system. We will ignore the two-dimensional discrete
ature of the dither matrices, and idealize the quantization interval as a one-dimensional con-

.
T
tinuum. We will also assume that the desired color is uniform over the quantization interval

hus we will treat the problem as analogous to pulse-width modulation, where the pulse rate
,

w
is much higher that the highest input frequency. Having made these simplifying assumptions

e now define the following symbols:

r
g
r desired fractional intensity of the red phospho

desired fractional intensity of the green phosphor

)
R
B fraction of the quantization interval over which neither phosphor is on (black

fraction of the quantization interval over which only the red phosphor is on (red only)
)

Y
G fraction of the quantization interval over which only the green phosphor is on (green only

fraction of the quantization interval over which BOTH phosphors are on (yellow)

It should be noted that B+R+G+Y=1 by definition.

The quantization is performed in our idealized case by comparing the desired intensity to

l
a thresholding function which varies over the quantizing interval, such as a linear ramp. A
inear ramp insures that we obtain a linear representation after integrating over the quantiza-

a
tion interval, but any function constructed by chopping the ramp up into subintervals which
re then permuted will have the same effect as far as the low frequencies are concerned. We

f
will assume that the red signal is quantized using a positive-going ramp for the threshold
unction; if we use the same function to quantize the green signal, then we can easily write

expressions for the fractional areas B,R,G and Y:

Y = min(r,g), (1)

)

R

B = 1−max(r,g), (2

= max(0,r−g), (3)

)

W

G = max(0,g−r). (4

e shall refer to this case as the positively correlated condition. If instead we choose a
-

t
negative-going ramp for the green threshold function, we have the negatively correlated condi
ion, with the following quantities for the fractional areas:



)

B

Y = max(0,(r+g)−1) (5

= max(0,1−(r+g)) (6)

)

G

R = min(r,1−g) (7

= min(g,1−r). (8)

c
A final case of interest is one in which the two threshold functions are uncorrelated. This
ase is easier to understand if the quantization interval is again considered to have two spatial

h
dimensions; the two threshold functions are still one-dimensional ramps over this interval, but
ave orthogonal tilts. (This type of correlation is also what we would expect from indepen-

dent noise dithering, or error diffusion.) We obtain

Y = r g (9)

)

R

B = (1−r) (1−g) (10

= r (1−g) (11)

)

N

G = (1−r) g (12

ow let us consider the error that results from quantization. We desire a certain level of red
-

r
(r), but we produce instead two spatial intervals, one having a value of 1 with an error of (1
), and another having a value of 0 with a resulting error of (-r). The average red error, e ,

can be expressed as
r

e = (1−r) (Y+R) + (−r) (B+G) . (13)

T

r

he first term in the sum, which is always positive, represents the excess red light from the

r
regions where the desired value was rounded up to 1; the second term represents the error
esulting from the regions where the desired value was rounded down to 0. Similarly, the

green error may be expressed

e = (1−g) (Y+G) + (−g) (B+R) . (14)

I

g

t can be verified that these quantities have a value of zero when the values for the fractional

t
areas from any of the three cases listed above are substituted into the equations. (When spa-
ial quantization is introduced this will not remain true in general.) A more interesting quan-

n
i
tity is the error variance, which is the square of the local error integrated over the quantizatio
nterval:

σ = (1−r) (Y+R) + (−r) (B+G) , (15)
2

2
r

2 2

g
2 2σ = (1−g) (Y+G) + (−g) (B+R) . (16)

d
The values of these quantities depends on the particular levels which we are trying to repro-
uce; they attain a maximum value of 0.25 when the desired level is 0.5, and the local error

has a constant magnitude of 0.5 over the entire interval.



It should be noted that the error variance of the red phosphor depends only on the frac-

w
tion of the area over which the red phosphor is turned on (R+Y), and is independent of how

e quantize the green signal. As was suggested in the introduction, however, the red phos-
r

t
phor is unlikely to correspond to the visual system’s internal representation of color. In orde
o predict the visual salience of the errors, therefore, it may be useful to recode the error into

assumed perceptual dimensions prior to computing the variance.
We can write simple expressions for the achromatic and chromatic components of the

signal as follows:

l = l r + l g (17)r g

r gc = l r − l g (18)

z
We can similarly write expressions for the luminance and chrominance of each of our quanti-
ation colors:

l = l + l , c = l − l , (19)

R

Y r g Y r g

r R rl = l , c = l , (20)

)l = l , c = −l , (21G g G g

B Bl = 0 , c = 0 . (22)

We can express the luminance error integrated over the quantization interval:

e = (l −l)Y + (l −l)R + (l −l)G + (l −l)B , (23)

S
l Y R G B

imilarly, we can express the integrated chrominance error as sum of the local chrominance
errors weighted by the corresponding areas:

e =(c −c)Y + (c −c)B + (c −c)R + (c −c)G. (24)

W

c Y B R G

e express the variance as the square of the local error integrated over the quantization inter-
val:

σ = (l −l) Y + (l −l) R + (l −l) G + (l −l) B (25)
2

2
l Y

2
R

2
G

2
B

2

c Y
2

R
2

G
2

B
2 )

T

σ = (c −c) Y + (c −c) R + (c −c) G + (c −c) B (26

he goal of this exercise is to show that by selecting the method for obtaining Y,B,R and G,
we can influence the relative magnitudes of σ and σ .2

l
2
c

t
1

Let us assume for the moment that the range of the red and green phosphors is such tha
unit of red has the same luminance as 1 unit of green, i.e. l =l =1. Under this assumption

w 2
l

2
c

r g
e can easily calculate the quantities σ and σ under each of the correlation assumptions

-
u
stated above in equations 1-4, 5-8, and 9-12. These quantities are plotted in figures 1-4. Fig
re 1 shows the luminance error variance as a function of gray level for a gray scale ramp.

f
The three curves represent correlations of 1,0, and -1 between the red and green threshold
unctions. Note that the error variance is greatest for the positive correlation, intermediate for

t
the uncorrelated case, and smallest for the negative correlation. The case of negative correla-
ion exhibits a zero for a gray level of 0.5: at this level the quantization interval is half red

-
n
and half green; since we have assumed that the red and green phosphor units have equal lumi
ance, there is no luminance variation over the interval.



e
t

Figure 2 plots the variance of the chromatic error for the same gray level ramp. Not
hat the ordering of the curves is reversed. The case of positive correlation exhibits zero

,
t
chromatic error variance at all gray levels; since the red and green signals overlap completely
he image consists of only yellow and black regions. Conversely, the case of negative corre-

r
lation exhibits the maximum chromatic error variance, since at every gray level there are
egions of both pure red and green.

In figures 3 and 4 we have plotted the same quantities for an equiluminant chromatic
t

t
ramp. In figure 3 the luminance error variance is plotted against the chrominance. Note tha
he curves have the same form as figure 2 above, but that the ordering is reversed. Similarly

n
in figure 4, where the chromatic error variance is plotted as a function of the target chromi-
ance, the curves have the same form as in figure 1.

t
t

A shortcoming of this analysis is that the variance measure does not take into accoun
he spatial profile of the errors, which greatly affects the visibility of artifacts. A single pixel

s
w
with a large error can make the same contribution to the variance as a larger number of pixel

ith smaller errors, although the latter will be less visible both because the amplitude is
e

o
smaller, and more importantly because the average spatial frequency is higher. For the cas
f ordered dither considered above, however, this deficiency will only overestimate the benefit

t
to be derived from the method; the method described never makes the final image worse than
hat obtained with correlated dither matrices.

s2.4. Effects of unequal phosphor luminance
In performing the above calculations, we have assumed that the red and green phosphor

g
excitations produce the same luminance. In practice, this is rarely the case: typically, the
reen phosphor produces substantial excitation in both the long-wave sensitive and middle-

s
l
wave-sensitive cones, and consequently has a higher luminance. The NTSC standard specifie
uminance ratios between the red, green, and blue phosphors of approximately 3:6:1, but sub-

stantial variation can be found in between actual monitors.
This effect can be incorporated into our analysis by using different values for the con-

stants l and l which were introduced above in equations (17) and (18). These constantsr g
represent the relative luminances of the red and green phosphors, which were assumed above
to each have a value of 1.

To illustrate the effects of this parameter, we consider an extreme case where the phos-

p
phor luminances have a ratio of 4 to 1. In order to compare this case to the previous exam-
le, the total luminance was held constant at 2, with l having a value of 0.4 and l having ar g

n
fi
value of 1.6. The resulting variances of the luminance and chromatic errors are plotted i

gures 5-8. The calculations performed were identical to those that generated figures 1-4 with

b
the exception of the luminance parameter. Note that the ordering of the curves is the same as
efore, but that the vertical differences are reduced. Another feature which can be noted in

u
figures 5-8 is that the middle curve, representing the case of uncorrelated dither images, is
naffected by the change in the relative phosphor luminances as long as the total luminance is

l
held constant. The fact that the differences between the curves is reduced as the phosphor
uminance ratio departs from 1 reflects the fact that when one phosphor has a luminance much

p
greater than the others, its errors will dominate the luminance error regardless how the other
hosphors are quantized.

This observation suggests a method for determining the optimal number of quantization

o
levels for each phosphor when we have the luxury of more than one bit per phosphor. In
rder to minimize the luminance component of the error, we should choose the quantization

n
c
step size for each phosphor in inverse proportion to its relative luminance. A common task i
omputer graphics is the display of a color image on a display having only 8 bits per pixel.



s
e
A common approach is to allocate 3 bits for green, 3 for red, and 2 for blue, yielding 8 level
ach for green and red, and 4 for blue. The above analysis suggests that we should instead

e
allocate 11 levels for green and 5 for red, thus making the step sizes have approximately
qual luminances. Note that the number of levels is not constrained to be a power of two,

2

merely that the product of the number of levels must be less than or equal to 256.

.5. Other possible approaches
The technique described above was motivated by a desire to exploit the visual system’s

a
insensitivity to high frequency chromatic modulation in order to improve the visual appear-
nce of quantized images. It should be emphasized that the technique described above is by

s
no means the only way that this might be accomplished. In this section we present a few
peculations on how this important property of vision might be exploited by other existing

schemes.
Instead of processing the component images independently, it is possible to read the

e
p
three component images in parallel, and at each pixel quantize the output value to one of th
alette colors. This may be done for either a fixed palette, or one which has been optimized

r
d
for the particular image. In any case, the quantization process requires the use of a metric fo
etermining which color from the palette is the "closest" to the target color. Although using a

perceptually uniform color space such as CIElab or CIEluv is more sensible than simply5

-
n
using the distance in RGB space, these color spaces were designed to represent color discrimi
ation data obtained with large uniform fields, and therefore probably give excessive weight

t
s
to purely chromatic differences. Simply stretching the space along the luminance axis is no
atisfactory, however, as that will continue to neglect the effects of chromatic errors even

when they occur at low frequencies.
One of the better digital halftoning methods is the Floyd and Steinberg error diffusion

algorithm . If the palette is one which is separable into red, green, and blue quantization6

steps (such as was considered in the preceding sections), then the red, green and blue com-
t

i
ponent images can be processed independently. Except in unusual cases where the componen
mages are highly correlated (as in a grey scale ramp), the halftoning errors produced by this

t
algorithm will tend to be uncorrelated, which we have seen produces an intermediate case in
erms of how the error is partitioned into chromatic and achromatic components. One way in

i
which the luminance error might be reduced would be to add the error signal from the first
mage processed (which should be the one which makes the largest contribution to the lumi-

s
u
nance error), and add it to the next component’s image prior to dithering. The error signal i
sually high-pass noise with few structured artifacts; since it contains little energy at low fre-

t
quencies, it should not distort the image, but should simply cause the new error to be nega-
ively correlated with that of the first dithered component.

T

3. CONCLUSION

he above analysis demonstrates that substantial tradeoffs between the chromatic and
n

b
achromatic components of halftoning noise can be affected by manipulating the correlatio
etween the errors in the individual phosphor images. The optimal correlation for a particular

a
image will in general depend on the overall noise level and the viewing conditions. The
ssumption that the luminance errors are the most visible is likely to hold when the errors are

s
near threshold and concentrated at high spatial frequencies, but may fail when the errors are
uprathreshold and at reduced spatial frequencies due to a small viewing distance.



c
v
Nevertheless, when the viewing conditions are known, it should be possible to apply basi
isibility data to determine the optimal combination rule.

f
d

Inverting one of the dither matrices in component ordered dither is a simple way o
ecorrelating the component errors. There is little additional computational cost associated

q
with doing this, and while the degree of improvement depends on the input image and the
uantization parameters, the errors are less than or equal to those obtained with correlated

matrices.
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