
ShowTime
Created by Andrew Watson, James Hu, Cesar Ramirez and Denis Pelli.

Last modified:

In[1]:= Date@D

Out[1]= 82000, 2, 2, 13, 0, 45<

Introduction

ShowTime is a software system that creates and displays QuickTime movies in a calibrated fashion, suitable for vision
research. ShowTime provides rudimentary controls for timing, contrast and color, as well as for accompanying warning
tones. It also provides a means for specifying the calibration of the display.

ShowTime for Mathematica currently consists of two files: a Mathematica notebook called ShowTime.nb and a binary
application called showtime. The functions defined in ShowTime.nb make use of the MathLink program showtime.
Currently we offer a version of this program that runs under MacOS. We are happy to share the source code for these
functions, and invite improvements or versions for other platforms.A version of ShowTime for MatLab is also available.

To explore the functionality of ShowTime, take a look at the tutorial below.

More generally, ShowTime is an infrastructure for psychophysical displays that is built upon the QuickTime media
system. See http://vision.arc.nasa.gov/showtime/

Contact the authors at:

"Andrew B. Watson" <abwatson@mail.arc.nasa.gov>

"Cesar V. Ramirez" <CRamirez@mail.arc.nasa.gov>

James Hu <qhu@mail.arc.nasa.gov>

Denis Pelli <denis@cns.nyu.edu>

Requirements

This software works best with Mathematica 4.0 and QuickTime 4.0 or above on a PowerPC. It may work with previous
versions and older hardware. Typically, the user would have a second monitor connected, though the software can be used
with a single monitor (see ScreenNumber option below).

Tutorial

ShowTime for Mathematica consists of two types of functions, high level and low level. The high-level functions allow
simple but flexible access to most of the functionality of Showtime. The low level functions allow more extensive control
over creation and display of QuickTime movies. We suggest the new user first try the high-level functions, proceeding to
the low-level functions only when and if necessary for additional control.The high-level functions are of course composed
of calls to the low-level functions, and may thus also be used as a tutorial example of how to use the low-level functions.

The Showtime functions may also be divided into those for displaying movies, those for creating video movies, and those
for creating music movies. We begin with display.

How To Use This Tutorial

This tutorial assumes you have some familiarity with Mathematica. Read the text, and when you encounter an evaluation
cell, evaluate it if the text so suggests. To function properly, the cells must be evaluated in order of appearance. To move
rapidly through just the evaluation cells, type Shift-Enter repeatedly. Underlined phrases in blue are hyperlinks, which
will transport you to other sections of the notebook, or to external urls (with the aid of your web browser).

Installation

To run this tutorial, you must have or create a folder containing the following files.

gabor.mov
gaborImage.mov
menaceshort.mov
right.mov
showtime
ShowTime.m
ShowTime.nb
warning.mov
wrong.mov

If you download ShowTime from the internet (http://vision.arc.nasa.gov/showtime/), it will create a folder on
your desktop called ShowTimeFolder, which will contain these files. Regardless of where the folder is placed,
the following incomprehensible command should work to set the current directory.

SetDirectory@StringJoin@HToString@#D <> ":"L & êû Rest@H"FileName" ê.
HDeveloper`NotebookInformation@SelectedNotebook@DDLL@@1DDDDD

Otherwise, manually set the Directory to the correct folder. Here is our example.

SetDirectory@":showtime:ShowTimeFolder"D

Next, we read in the package (.m file) corresponding to this notebook

2 ShowTime.nb

<< ShowTime.m

The ShowTime Palette

In Mathematica, "palettes" are windows with buttons that execute useful functions. We have created a simple ShowTime
palette that the user might find useful, especially while learning or debugging. To activate this palette, evaluate the
following:

<< ShowTimePalettes.m

As the above function evaluates, a small window with eight buttons should pop up somewhere on your screen. These
buttons can be used at any time as shortcuts to typing in corresponding commands. One button deserves special mention:
QTReset. Use this when errors have put ShowTime in a problematic state.

Showing movies

‡ A basic display

The following expression sets some options for the tutorial. It asks which screen you would like to use. If you are working
on a computer with only one screen, answer 0. If you have two screens, it may be useful to put the displays on the second
"extra" screen, which is number 1. By default, it will place the display window in the upper left of the selected screen.
Make sure other windows don't obscure it.

SetOptions@QT, ScreenNumber Æ
Input@"Which screen would you like to use for the Tutorial?"D,
WindowSize Æ 8256, 256<, WindowPosition Æ 80, 0<D;

We open ShowTime. A gray rectangle should appear on the selected screen. You may need to move other windows to
make it visible as ShowTime windows always appear beneath other open application windows.

QTOpen@D;

We show a movie of a Gabor function whose contrast varies in a Gaussian fashion over time. By default, it appears in the
center of the window. The argument is simply the filename of a QuickTime movie.

QTShow@"gabor.mov"D;

We close ShowTime.

QTClose@D;

These three command are the essentials of ShowTime. In the following sections we will show further examples the
illustrate the various options.

ShowTime.nb 3

If you have the ShowTime palette open, you could have performed the preceeding example by clicking QTOpen, Gabor,
and then QTClose. Why not try it now?

‡ Setting the window size and position.

We open ShowTime again. By default, ShowTime will use the entire screen (WindowSize->FullScreen). This time we
specify a window size in pixels of the form {height,width}.

QTOpen@WindowSize Æ 8256, 512<D

Notice that QTOpen returns a list of current options, as do the functions QTShow and QTClose. The purpose of these
options should become clearer as the tutorial proceeds.

 By default it is positioned in the upper left corner. We can select another position.

QTOpen@WindowSize Æ 8256, 256<, WindowPosition Æ 8256, 0<D;

‡ Setting the window color

To set the color of the area within the window, use the option Background to indicate a list of three 16 bit numbers
specifying {R,G,B}. The new window will now be red.

QTOpen@Background Æ 865535, 0, 0<D;

‡ Select Screen

If you have more than one screen, you may select the screen on which you wish the movie to be displayed. Screens are
numbered from 0. The following command indicates you wish the displays to occur on the third screen. The default is
ScreenNumber ->0, which is the console. Skip this command if you wish to remain on the console, or if you have only one
screen!

QTOpen@ScreenNumber Æ 1D;

‡ Specify a sound track

To add an accompanying sound, we use the Sound option to specify a QuickTime movie that contains a sound track.

QTShow@"gabor.mov", Sound Æ "warning.mov"D

In a later section, we describe how to create simple musical sounds and synthetic speech.

‡ Specify a delay between sound and movie

Often one would like a warning tone to precede a visual stimulus by a specific time interval. This can be done with the
Offset option which takes a value in seconds

4 ShowTime.nb

QTShow@"gabor.mov", Sound Æ "warning.mov", Offset Æ 1D

‡ Play a sound by itself

You can also play just a sound track by itself. This might be used for feedback,

QTShow@"right.mov"D

or for amusement,

QTShow@"music.mov"D

In a later section, we describe how to make movies that contain music or synthetic speech.

‡ Clear the window after the movie plays

The option Clear specifies the color with which to fill the movie region. The color is a 16 bit RGB triple.

QTShow@"gabor.mov", Clear Æ 865280, 0, 25000<D

‡ Change the frame rate of the movie display.

The option FrameRate is used to change the frame rate of the display. If you use QuickTime Player to examine the frame
rate of "gabor.mov" you will see it has a frame rate of 30 Hz. By default (FrameRate->Normal), this is the rate at which it
will be displayed. This means, for example, that if the display screen is refreshed at 60 Hz, each movie frame will be
refreshed twice. To have each frame displayed once, use the option FrameRate->Screen.

QTShow@"gabor.mov", FrameRate Æ ScreenRate, Sound Æ "warning.mov"D

QTShow@"gabor.mov", FrameRate Æ NormalRate, Sound Æ "warning.mov"D

QTShow@"gabor.mov", Sound Æ "warning.mov"D

To playback at a frame rate of 12.7 Hz,, use FrameRate->12.7. We include the warning sound in this example to show that
both tracks will be played back at the specified frame rate.

QTShow@"gabor.mov", FrameRate Æ 12.7, Sound Æ "warning.mov"D

‡ Change the color look-up-table (CLUT)

Color look-up-tables specify the mapping from image pixel values to actual colors on the screen. We first create a clut
which inverts colors.

ShowTime.nb 5

clut = Table@255 - c, 8c, 0, 255<, 83<D;

Our convention is to have cluts with dimensions {256,3} (assuming 8 bit color).

Dimensions@clutD

Beware: if you are using the console (ScreenNumber->0) to display this demo, the clut of the entire screen will be
affected. You can restore the default clut as shown below (or by closing and re-opening ShowTime).

QTShow@"gabor.mov", CLUT Æ clutD

This command will restore the previous CLUT.

QTShow@"gabor.mov", CLUT Æ Table@c, 8c, 0, 255<, 83<DD

A more extensive discussion of color maps is given in a section below.

‡ Display a single frame for a fixed duration

Here we use a single-frame movie, and specify a framerate of 1 Hz, to achieve a 1 second exposure. We use clear to
terminate the exposure.

QTShow@"gaborImage.mov", FrameRate Æ 1., Clear Æ 256 8128, 128, 128<D

‡ Change the magnication of a stimulus

You can magnify or minify a movie with the Scale option. Currently scale must be a real number.

QTShow@"gabor.mov", Scale Æ 2.D

QTShow@"gabor.mov", Scale Æ .25D

‡ Take a break!

QTShow@"menaceshort.mov", FrameRate Æ 10D

QTClose@D;

6 ShowTime.nb

Making Movies

This Notebook contains functions that enable the user to write arrays of numbers to QuickTime movie files. The general
idea is that the user creates, in Mathematica, a multidimensional array (tensor) of numbers, which represent grayscale or
rgb component values of one or several frames of a movie. Using the function QTWrite, the array is written to a Quick-
Time file. When writing the file, the user may specify the frame-rate of the movie. Several arrays can be written, as
separate video tracks, to a single movie, with settings that determine how the movies will be combined.

In this tutorial, we show several examples of writing grayscale, color, and multiple-track movies.

Users who want information on the lower level functions from which QTWrite is constructed should look at the section
Low Level Functions below.

First, we look at the usage message for QuickTimeWrite.

?QTWrite

Next we open ShowTime. This is not necessary for making movies, but we want to display each one after we create it.

QTOpen@D;

‡ A single frame grayscale movie

Our first creation is a movie with a single grayscale frame, consisting of four pixels with different graylevels. Each
graylevel must lie between 0 and 255, since this is an eight-bit graylevel image.

movie = 8880, 80<, 8200, 255<<<

If you ever need to check a movie's appearance within Mathematica, you can use ShowMovie, which renders the movie as
a series of graphics.

ShowMovie@movieD;

Now we write the array to a QuickTime file.

QTWrite@"test.mov", movieD;

After writing the movie, take a look at it with QTShow or QuickTime Player. QTWrite sometimes takes a moment to
finish saving the file, so make sure it is done before you try to display it.

QTShow@"test.mov", Scale Æ 64D

Notice that grayscale is reversed in the QuickTime movie. This is a "feature" of QuickTime. Don't blame us.

ShowTime.nb 7

‡ A Grayscale Ramp

This single frame is a ramp which increases in intensity from left to right.

frames = 1;
rows = 16;
columns = 64;
bits = 8;
movie = 8Table@Range@0, 2^bits - 1, H 2^bitsLê columnsD, 8rows<D<;

ShowMovie@movieD;

QTWrite@"test.mov", movieD

QTShow@"test.mov"D

Notice that the display is superimposed on our previous example,this is because we never cleared the window.

‡ A multiple frame grayscale movie

To make things very simple we use the IdentityMatrix function which will yield a diagonal line, which we scroll using the
RotateRight function.

frames = 32;
rows = 32;
movie = 255 Table@RotateRight@IdentityMatrix@rowsD, fD, 8f, frames<D;

We test it with ShowMovie. If you select the resulting graphic cells and type Command-y,the frames will be animated.

ShowMovie@movieD;

Dimensions@movieD

This time we use the Verbose option, which gives various diagnostic messages, and which may be useful during program
development and testing.

QTWrite@"test.mov", movie, Verbose Æ TrueD;

QTShow@"test.mov", Scale Æ 4.D

8 ShowTime.nb

‡ A single frame color movie

 We use transformation rules to turn the ones and zeros into particular color triples.

rows = 32;
movie = 255 8IdentityMatrix@rowsD ê. 80 Æ 80, 1, 0<, 1 Æ 81, 0, 1<<<;

We verify that the array has the appropriate dimensions ({frames,rows,columns,colors})..

Dimensions@movieD

We use the ShowMovie command to display the movie within the notebook as a sequence of images (in this case, one).

ShowMovie@movieD;

Now we write the array to a QuickTime movie file called "test.mov". After it is written, you should locate it in the finder,
double click on it, and verify that is correct.

QTWrite@"test.mov", movieD

QTShow@"test.mov", Scale Æ 4.D

‡ A moving color bar

We create a multidimensional array, corresponding to the several frames of a color movie. It is a moving red diagonal line
on an aqua background.

frames = 32;
rows = 32;
frame0 = IdentityMatrix@rowsD ê. 80 Æ 80, 255, 255<, 1 Æ 8255, 0, 0<<;
movie = Table@RotateRight@frame0, fD, 8f, frames<D;

We verify the dimensions.

Dimensions@movieD

QTWrite@"test.mov", movieD

QTShow@"test.mov", Scale Æ 4D

ShowTime.nb 9

‡ Setting the frame rate

The default time scale of the movie is 60 Hz. Here we experiment with a slower speed. Note that this does not alter the
number of frames in the movie, but rather the times at which the frames are presented.

QTWrite@"test.mov", movie, FrameRate Æ 5D

The line should now move very slowly.

QTShow@"test.mov", Scale Æ 4D

Of course, we can make it move at the display frame rate with the appropriate option.

QTShow@"test.mov", FrameRate Æ ScreenRateD

Notice that there are two ways of controlling movie speed being utilized here. One is the creation of the movie at a
particular rate, and the other is playback of a movie at a particular rate.

‡ A Color Ramp

This is a ramp which increases in intensity from left to right, an which changes color from red to green over the duration
of the movie.

frames = 8;
rows = 16;
bits = 8;
image0 = Table@Range@0, 2^bits - 1, 4 2^ Hbits - 8LD, 8rows<D;
colors0 = 81 - #, #, 0< & êû HHRange@framesD - 1Lê framesL;
movie = Transpose@Map@image0 *# & , colors0, 82<D, 81, 4, 2, 3<D;
Print@"Movie dimensions: ", Dimensions@movieDD;

Movie dimensions: 88, 16, 64, 3<

ShowMovie@movieD;

QTWrite@"test.mov", movie, FrameRate Æ 10D

QTShow@"test.mov", Scale Æ 2D

‡ Making fixation points

Our first fixation point will be as simple as possible: a single black pixel.It is a single frame, with a frame rate of 1 Hz, so
the duration is 1 second.

10 ShowTime.nb

fix1 = 8 8880, 0, 0<<<<;

QTWrite@"fix1.mov", fix1, FrameRate Æ 1D

We re-open the window, to begin with a clear screen.

QTOpen@Background Æ 2^16 - 1 81, 1, 1<D;

QTShow@"fix1.mov"D

Now we create a slightly larger fixation movie, consisting of a 3x3 cross on a white background. Just for fun, we make it
red.

fix2 = 255 8 8881, 1, 1<, 81, 0, 0<, 81, 1, 1<<
, 881, 0, 0<, 81, 0, 0<, 81, 0, 0<<
, 881, 1, 1<, 81, 0, 0<, 81, 1, 1<<<<;

QTWrite@"fix2.mov", fix2, FrameRate Æ 1D

QTShow@"fix2.mov"D

‡ Adding two color tracks

QTWrite will allow you to write several arrays to separate tracks of a single QuickTime movie. Here we create two arrays
representing diagonal lines of different colors and orientations.

frames = 8;
movie1 =
Transpose@Table@RotateRight@IdentityMatrix@16D, fD *# & êû 8255, 0, 0<,

8f, frames<D, 81, 4, 2, 3<D;
movie2 = Transpose@Table@RotateRight@Reverse@IdentityMatrix@16DD, fD * # & êû

80, 255, 0<, 8f, frames<D, 81, 4, 2, 3<D;

This verifies the appearance of their average.

ShowMovie@Hmovie1 + movie2Lê 2D;

By default, this will average the two movies.

QTWrite@"test.mov", 8movie1, movie2<, MultiTrack Æ TrueD

ShowTime.nb 11

QTShow@"test.mov", Scale Æ 8, FrameRate Æ 10D

‡ Adding three color tracks

Here the three tracks have different colors and move at different speeds.

frames = 16;
movie1 =
Transpose@Table@RotateRight@IdentityMatrix@16D, 3 fD *# & êû 8255, 0, 0<,

8f, frames<D, 81, 4, 2, 3<D;
movie2 = Transpose@Table@RotateRight@Reverse@IdentityMatrix@16DD, 2 fD *# & êû

80, 255, 0<, 8f, frames<D, 81, 4, 2, 3<D;
movie3 = Transpose@Table@RotateRight@Reverse@IdentityMatrix@16DD, fD * # & êû

80, 0, 255<, 8f, frames<D, 81, 4, 2, 3<D;

By default, this will average the three movies.

QTWrite@"test.mov", 8movie1, movie2, movie3<, MultiTrack Æ TrueD

QTShow@"test.mov", Scale Æ 8, FrameRate Æ 10D

‡ Adding two grayscale tracks

First we make a grating that moves downward.

rows = 64;
frames = 16;
frequency = 8;
grating =
Round@128 + 127 Table@Cos@2 Pi y frequencyêrowsD , 8y, rows<, 8rows<DD;

movie1 = Table@RotateRight@grating, yD, 8y, frames<D;

You can verify it's appearance.

ShowMovie@movie1D;

Then we make a noise image that moves rightward.

noise = Table@Random@Integer, 80, 255<D, 8rows<, 8rows<D;
movie2 = Table@Transpose û RotateRight@noise, yD, 8y, frames<D;

12 ShowTime.nb

ShowMovie@movie2D;

By default, this will average the two movies, along with a mean gray.

QTWrite@"test.mov", 8movie1, movie2<, MultiTrack Æ TrueD

QTShow@"test.mov", Scale Æ 2, Clear Æ 256 128 81, 1, 1<D

Which way did it move? Hey! We're doing psychophysics already!

Making Music

Although ShowTime is mainly about visual stimulation, it is often useful to be able to produce audible cues in vision
experiments. For this purpose we provide the QTMusic function, which creates a QuickTime movie consisting of a series
of MIDI codes. The subject of MIDI is beyond our scope, but we provide some codes in another section of this document.

As a simple example, we define an instrument. We use the MIDI code 1 for an "Acoustic Grand Piano", with polyphony 3.

instrument1 = 81, 3<;

We then define a set of two notes, separated by rests, progressing up from middle C.

notes = 881, 60, 100, 240<, 80, 0, 0, 240<, 81, 61, 100, 240<, 80, 0, 0, 240<<;

Before the file is written, the composition is played.

QTMusic@"music.mov", notes, 8instrument1<D

Here is a more elaborate composition of ten notes, in which the pitch , duration, and instrument are chosen randomly.

n = 10;
QTMusic@"music.mov",
notes = Flatten@#, 1D &û
Table@88k, Random@Integer, 830, 127<D,

70, Random@Integer, 8100, 600<D<, 80, 0, 0, 340<<, 8k, n<D,
instr = Table@8Random@Integer, 81, 127<D, 3<, 8k, n<DD

This movie can later be combined with visual stimuli at run-time by using the Sound option of QTShow.

QTShow@"gabor.mov", Sound -> "music.mov"D

ShowTime.nb 13

Making Speech

It is easy to make QuickTime movies that contain synthetic speech, which might be useful for instructions to the observer,
or feedback. Here is an example:

QTShow@"right.mov"D

To make such movies, we use the shareware program QuickSpeech, which is available at www.webnation.com/webtools/.

When ShowTime Freezes Over (Troubleshooting)

On occasion, ShowTime will freeze. The usual way to escape this state is

1) switch to showtime in the application menu,

2) type "Command-Q"

3) go back to the frozen notebook

4) type "Command-,"

5) click on "Abort command being evaluated"

6) in the small button window, click on QTReset.

Another possible problem is displays that look like garbage (very skewed). This may be the result of buggy display card
drivers. Update them.

High Level Functions

‡ Disable Typo Warnings

Off@General::"spell1"D

Off@General::"spell"D

14 ShowTime.nb

‡ QT

QT::usage =
"QT is not a function, but is used to store options to many of the QT
functions. To see a list of QT functions, enter ?QT*. Many of the
functions accept or return pointers to either a window or a movie.
In Mathematica, these are represented as large integers.
Also, many routines return a list of the form
8Pointer, 8ErrorNumber,ErrorMessage<<. The ErrorNumber
and ErrorMessage are used primarily in debugging.";

Options@QTD =
8FrameRate Æ NormalRate, ScreenNumber Æ 1, WindowPosition Æ 80, 0<,
WindowSize Æ 8256, 256<, CLUT Æ Automatic, Background Æ 256 8128, 128, 128<
, Sound Æ None, WindowPointer Æ None, QTLink Æ None, WindowRect Æ None,
Application Æ "showtime", Clear Æ False, Scale Æ Automatic<;

‡ QTOpen

Clear@QTOpenD

QTOpen::usage =
"QTOpen@opts___RuleD Initialize ShowTime. Installs the application \"
showtime\" and opens a window for displays.The following options H
shown with defaultsL may be used: ScreenNumberÆ0, WindowPositionÆ
80,0<, WindowSizeÆFullScreen, BackgroundÆ2568128,128,128<.";

ShowTime.nb 15

QTOpen@opts___RuleD := Module@8scr, bkg, pos, siz, rect, link, app, wptr<,
8scr, bkg, pos, size, link, app< =

8ScreenNumber, Background, WindowPosition, WindowSize,
QTLink, Application< ê. 8opts< ê. Options@QTD;

If@Head@linkD == LinkObject,
HPrint@"QT is already open. Will close and reopen."D;
QTClose@D; Pause@1DLD;

rect = If@size === FullScreen,
8<, Reverse@posD~Join~Reverse@pos + sizeDD;

SetOptions@QT, QTLink Æ Install@appD,
WindowPointer Æ Hwptr = QTWindowOpen @scr, 8<, rectD@@1DDL,
WindowRect Æ rectD;
QTWindowFill@wptr, bkgD;
If@rect ä 8<,
SetOptions@QT,
WindowRect Æ AbsoluteRect@QTScreenRectGet@scrD@@1DDDD, Options@QTDD

D

AbsoluteRect@rect_D := 80, 0, rect@@3DD - rect@@1DD, rect@@4DD - rect@@2DD<

‡ QTClose

QTClose::usage = "QTClose@ D Close the
ShowTime window and uninstall the showtime application."

QTClose@ D := Module@8wptr, lnk<,
8wptr, lnk< = 8WindowPointer, QTLink< ê. Options@QTD;
QTWindowClose@wptrD;
Uninstall@lnkD;
SetOptions@QT, QTLink Æ None, WindowPointer Æ NoneD

D

‡ QTShow

Clear@QTShowD

16 ShowTime.nb

QTShow::usage = "QTShow@filename_,opts___RuleD Show a QuickTime movie. Must
be preceded by a call to QTOpen@D. Possible options, with defaults are:

CLUTÆAutomatic, color look up table for the window of dimensions 8256,3<,
ClearÆ832768,32768,32768<, color to fill the movie region after the movie,
SoundÆNone, sound movie to play along with the movie
FrameRate->Normal, frame rate at which to display

movie, other options are FrameRate->Screen for the native
rate of the display, and FrameRateÆ<real value in Hz>,

Scale->Automatic, magnify or minify the movie by a constant
factor, Offset->0, an offset in seconds before the start
of the movie, Verbose->False supress diagnostic printout.";

Options@QTShowD = 8Offset Æ 0, Verbose Æ False<;

QTShow@filename_, opts___RuleD := Module@
8msg, mptr, sound, clut, wptr, clr, rate, size, scale, offset, verbose<,

8sound, clut, wptr, clr, rate, size, scale, offset, verbose< =
8Sound, CLUT, WindowPointer,
Clear, FrameRate, WindowSize, Scale, Offset, Verbose< ê.

8opts< ê. Options@QTD ê. Options@QTShowD;
PrintDiagnostic = If@verbose, Print, Null &D;

H8mptr, msg< = QTMovieGetFromFile@filenameDL êê PrintDiagnostic;

PrintDiagnostic@"offset = ", offset, " sec."D;
Htscale = QTMovieTimescaleGet@mptrDL êê PrintDiagnostic;
tscale = tscale@@1DD;
QTMovieTrackOffsetSet@mptr, 1, Round@offset tscaleDD êê PrintDiagnostic;

If@! Hsound === NoneL,
8mptr2, msg< = QTMovieGetFromFile@soundD;
QTMovieAdd@mptr, mptr2DD;
If@! Hclut === AutomaticL,
QTWindowClutSet@wptr, Flatten@Transpose@clutDDD êê PrintDiagnosticD;

If@! Hscale === AutomaticL,
QTMovieScale@mptr, scaleD êê PrintDiagnosticD;
QTMovieRate@mptr, rateD êê PrintDiagnostic;
QTMovieWindowSet@mptr, wptrD êê PrintDiagnostic;
QTMovieLoadIntoRAM@mptrD êê PrintDiagnostic;
QTMovieShow@mptrD êê PrintDiagnostic;
If@ListQ@clrD,
QTMovieRectFill@mptr, clr, 8<D êê PrintDiagnostic D;
QTMovieDispose@mptrD êê PrintDiagnostic;
If@! Hsound === NoneL, QTMovieDispose@mptr2D êê PrintDiagnosticD;

D

ShowTime.nb 17

QTShow@"gabor.mov"
, Clear Æ 256 8128, 0, 128<
, Scale Æ 0.5
, Sound Æ "warning.mov"
, CLUT Æ Table@Random@Integer, 80, 255<D, 83 <, 8256<D
, FrameRate Æ 15
, Verbose Æ TrueD

‡ QTTest

QTTest@filename_, opts___D :=
HQTOpen@WindowSize Æ 8256, 256<, optsD; QTShow@filename, optsD; QTClose@D;L

‡ QTWrite

Clear@QTWriteD

QTWrite::usage =
"QTWrite@filename_, array_, opts___RuleD : Write an array of numbers to
a QuickTime movie file. The array can represent a single movie or
a set of movies, and each movie can be either color or grayscale.
The order of the dimensions of array are 8movies,frames,rows,
columns,colors<, with movies and colors possibly absent. Numbers
in the array should be integers between 0 and 255. The movies in
the array are added as separate tracks to the QuickTime movie file.
Various options can be specified, shown here with their defaults:
8BitsPerPixelÆ8, FrameRateÆ60, InformationÆ\"\", OffsetÆ0.,
PreLoadÆTrue, GraphicsMode->Automatic, MultiTrack->False,
BlendWeightsÆAutomatic<. Offset is the interval from the start
of the movie to the start of the track, in seconds. If there
are several tracks, set MultiTrack->True. In that case, the
graphics mode for each track is set to Blend, and the blending
weights default to values that yield the average of the several
tracks. Blending weights are unsigned integers between 0 and 2^
16-1. A longer discussion of graphics mode is provided below." ;

Options@QTWriteD = 8BitsPerPixel Æ 8, FrameRate Æ 60,
Information Æ "", Offset Æ 0., PreLoad Æ True, GraphicsMode -> Automatic,
MultiTrack -> False, BlendWeights Æ Automatic, Verbose Æ False<;

18 ShowTime.nb

QTWrite@filename_, movie_, opts___RuleD :=
Module@8kFix1 = 1, kDitherCopy = 64, kBlend = 32, tracks, frames, rows,
columns, info, offset, rate, bits, link, gmode, multitrack, tmovie,
bweights, verbose, NullFunction, preload, linkTemporary = False<,

8info, offset, rate, bits, preload, gmode, multitrack, bweights, verbose< =
8Information, Offset, FrameRate, BitsPerPixel, PreLoad, GraphicsMode,

MultiTrack, BlendWeights, Verbose< ê. 8opts< ê. Options@QTWriteD;
PrintDiagnostic = If@verbose, Print, Null &D;
preload = If@preload, 1, 0D;
PrintDiagnostic@"8info,offset,rate,

bits,preload, gmode, multitrack,bweights,verbose< = ",
8info, offset, rate, bits, preload, gmode, multitrack, bweights, verbose< D;
tracks = If@multitrack, Length@movieD, 1D;
PrintDiagnostic@"tracks = ", tracksD;
If@bweights === Automatic,
bweights = 8#, #, #< & êû Round@H2^16 - 1Lê Range@tracksDDD;
PrintDiagnostic@"bweights = ", bweightsD;

gmode = If@gmode === Automatic && multitrack === False, kDitherCopy, kBlendD;
PrintDiagnostic@"gmode = ", gmodeD;
PrintDiagnostic@"8offset,rate,gmode< = ", 8offset, rate, gmode<D;
8offset, rate, gmode< =
If@! ListQ@#D, Table@#, 8tracks<D, #D & êû 8offset, rate, gmode<;
PrintDiagnostic@"8offset,rate,gmode< = ", 8offset, rate, gmode<D;

color = If@TensorRank@ If@multitrack, movie@@1DD, movieDD ä 4, 1, 0D;
PrintDiagnostic@"color = ", colorD;
tmovie = Round@If@multitrack, movie, 8movie<DD;
8frames, rows, columns< = Dimensions@tmovieD@@82, 3, 4<DD;
PrintDiagnostic@"8frames,rows,columns< = ", 8frames, rows, columns<D;

pixelSize = bits H1 + 2 colorL;
PrintDiagnostic@"pixelSize = ", pixelSizeD;

link = QTLink ê. Options@QTD;
If@ link === None, link = Install@"showtime"D; linkTemporary = TrueD;
RetVal = QTMovieCreate@filename, 0D;
MoviePtr = RetVal@@1DD;
PrintDiagnostic@RetVal@@2DDD;

Table@
HPrintDiagnostic@"track,rate,offset = ",

8track, rate@@trackDD, offset@@trackDD<D;
PrintDiagnostic@QTVideoTrackCreate@MoviePtr, rows, columns,

rate@@trackDD, preload D@@2DDD;
PrintDiagnostic@QTVideoMediaCreate@MoviePtrD@@2DDD;
PrintDiagnostic@8MoviePtr, color, pixelSize, rows, columns, frames<D;
PrintDiagnostic@QTVideoMediaSamplesAdd@MoviePtr, Flatten@

tmovie@@trackDDD, color, pixelSize, rows, columns, frames, 1D@@2DDD;
PrintDiagnostic@QTVideoMediaGraphicsModeSet@MoviePtr,

DD

ShowTime.nb 19

gmode@@trackDD, bweights@@trackDDDD;
PrintDiagnostic@QTVideoMediaSave@MoviePtrD@@2DDD;
PrintDiagnostic@QTVideoTrackSamplesSet@MoviePtr,

Round@offset@@trackDDê rate@@trackDDD, 0, frames, 1.D@@2DDD;
PrintDiagnostic@QTVideoTrackSave@MoviePtrD@@2DDDL;
, 8track, tracks<D;

PrintDiagnostic@QTMovieUserDataAdd@MoviePtr, info, "ûinf"D@@2DDD;
QTMovieSave@MoviePtrD;
If@linkTemporary, Uninstall@linkDD;D

‡ QTWriteExample

This is a very simple example program. It is provided mainly as a programming example, minus the more elaborate
diagnstics and multi-track capability of QTWrite.

QTWriteExample@filename_, movie_D :=
Module@8frames, rows, columns, rate = 60, bits = 8, link, preload = 1<,
color = If@TensorRank@ movieD ä 4, 1, 0D;
8frames, rows, columns< = Dimensions@movieD@@81, 2, 3<DD;
pixelSize = bits H1 + 2 colorL;
link = Install@"showtime"D;
MoviePtr = QTMovieCreate@filename, 0D@@1DD;
QTVideoTrackCreate@MoviePtr, rows, columns, rate, preload D;
QTVideoMediaCreate@MoviePtrD;
QTVideoMediaSamplesAdd@MoviePtr,
Flatten@movieD, color, pixelSize, rows, columns, frames, 1D;
QTVideoMediaSave@MoviePtrD;
QTVideoTrackSamplesSet@MoviePtr, 0, 0, frames, 1D;
QTVideoTrackSave@MoviePtrD;
QTMovieSave@MoviePtrD;
Uninstall@linkD;

D

‡ QTReset

QTReset::usage =
"QTReset@D Reset QT after failure of the showtime application.";

QTReset@D := H Uninstall êû Cases@ Links@D, LinkObject@"showtime", ___DD;
SetOptions@QT, WindowPointer Æ None, QTLink Æ None, WindowRect Æ NoneDL

‡ ShowMovie

This is a utility for displaying a movie (color or bw) in a Mathematica notebook as a series of images. These can be
selected as a group and animated with the menu item "Cell->Animate Selected Graphics". The function assumes that the
pixel values range from 0 to 255.

20 ShowTime.nb

ShowMovie@movie_D :=
Show@Graphics@RasterArray@#D, AspectRatio Æ AutomaticDD & êû
Map@If@TensorRank@movieD ä 3, GrayLevel, RGBColor ûû # &D,
Reverse êû Hmovie ê255.L, 83<D

‡ QTMusic

QTMusic::usage =
"QTMusic@filename_,notes_List,instruments_List, opts___RuleD Create a
movie with only a music track. Notes is a list of notes and rests,
where a note is of the form 8instrument, pitch, volume, duration< and a
rest is of the form 80, 0, 0, duration<. The instrument is an integer
index into the list instruments. The pitch is an integer from 0 to
127, where 60 is musical middle C H61 is C sharp, 59 is B, 72 is the
C above middle C, and so onL. The volume is an integer from 0 to 127
that describes how loud to play the note; 64 is average loudness, 127
is very loud, 1 is nearly inaudible, and 0 means to stop playing the
note. Duration is in units of the movie time scale Hdefault = 600 HzL.
Instruments is a list of instruments, each of the form 8instrumentNumber,
Polyphony<.As an example instrumentNumber, 57 = Trumpet. The
options and defaults are 8TimeScaleÆ600, PreLoadÆ1, PlayRateÆ
1, OffsetÆ0, InformationÆ\"\", PlayÆTrue, VerboseÆFalse<.";

Clear@QTMusicD

Options@QTMusicD = 8TimeScale Æ 600, PreLoad Æ 1, PlayRate Æ 1,
Offset Æ 0, Information Æ "", Play Æ True, Verbose Æ False<;

ShowTime.nb 21

QTMusic@filename_, notes_List, instruments_List, opts___RuleD :=
Module@8iStartInMedia = 0, iDurationInMedia = -1, link, info, offset, timescale,
playrate, preload, verbose, play, MoviePtr, save, linkTemporary = False<,

8info, offset, timescale, playrate, preload, verbose, play, save< =
8Information, Offset, TimeScale, PlayRate, PreLoad, Verbose, Play, Save< ê.

8opts< ê. Options@QTMusicD;
PrintDiagnostic = If@verbose, Print@#@@2DDD &, Null &D;
link = QTLink ê. Options@QTD;
PrintDiagnostic@"link = ", linkD;
If@ link === None, PrintDiagnostic@"install"D;
link = Install@"showtime"D; linkTemporary = TrueD;

HRetVal = QTMovieCreate@filename, 0DL êê PrintDiagnostic;
MoviePtr = RetVal@@1DD;

QTMusicTrackCreate@MoviePtr, timescale, preload D êê PrintDiagnostic;
QTMusicMediaCreate@MoviePtrD êê PrintDiagnostic;
QTMusicMediaSamplesAdd@MoviePtr, notes, instrumentsD êê PrintDiagnostic;
QTMusicMediaSave@MoviePtrD êê PrintDiagnostic;
QTMusicTrackSamplesSet@MoviePtr,

Round@offsetê timescaleD, iStartInMedia,
iDurationInMedia, playrate + 0.D êê PrintDiagnostic;

QTMusicTrackSave@MoviePtrD êê PrintDiagnostic;
QTMovieUserDataAdd@MoviePtr, info, "ûinf"D êê PrintDiagnostic;
If@play, QTMovieShow@MoviePtrDD;
QTMovieSave@MoviePtrD êê PrintDiagnostic;
If@linkTemporary, Uninstall@linkDD;D

Low Level Functions

Showing movies

‡ QTMovieAdd

QTMovieAdd::usage = "QTMovieAdd@MoviePointer1_, MoviePointer2_D Add a second
movie to the first movie. The second movie may be a sound-only movie.";

QTMovieAdd := qtMovieAdd

22 ShowTime.nb

‡ QTMovieDispose

QTMovieDispose::usage =
"QTMovieDispose@MoviePointer_D Free memory used by a movie.";

QTMovieDispose := qtMovieDispose

‡ QTMovieFrameDisplay

QTMovieFrameDisplay := qtMovieFrameDisplay

QTMovieFrameDisplay::usage =
"QTMovieFrameDisplay@MoviePointer_, FrameNumber_, MoveType_D : Display a
frame from a movie. MoveType=0 specifies absolute frame positioning.
In this case, positive values for FrameNumber indicate number of frames
from the begining and negative values indicate frames from the end.
When MoveType=1, relative frame positioning is used; here positive
FrameNumber values move that number of frames in the forward direction,
negative values move backwards, and FrameNumber=0 simply refreshes the
current frame. Note: attempting to move before the first frame or past
the last, will simply display the first or last frame respectively.
Returns 8AbsoluteFrameNumber, 8ErrorNumber, ErrorMessage<<";

‡ QTMovieGetFromFile

QTMovieGetFromFile::usage =
"QTMovieGetFromFile@filename_StringD Read a movie from a
file. Returns 8MoviePointer,8ErrorNumber,ErrorMessage<<";

QTMovieGetFromFile := qtMovieGetFromFile

‡ QTMovieLoadIntoRAM

QTMovieLoadIntoRAM::usage = "QTMovieLoadIntoRAM@MoviePointer_D
Load a movie into memory to speed subsequent display.";

QTMovieLoadIntoRAM := qtMovieLoadIntoRAM

ShowTime.nb 23

‡ QTMovieRate

QTMovieRate::usage =
"QTMovieRate@MoviePointer_, Rate_D Set the playback rate of a
movie, in Hz. If Rate is the symbol ScreenRate, the movie will
play back at the framerate of the screen. If Rate is the
symbol NormalRate, it will paly back at the rate specified in
the QuickTime movie file. If this function is not called, the
movie will play back at NormalRate. Returns the previous rate.";

QTMovieRate@MoviePointer_, NormalRateD := Null

QTMovieRate@MoviePointer_, ScreenRateD :=
qtMovieRate@MoviePointer, 0.0, "ScreenRate"D

QTMovieRate@MoviePointer_, rate_D := qtMovieRate@MoviePointer, rate + 0.0, ""D

‡ QTMovieRectFill

QTMovieRectFill::usage =
"QTMovieRectFill@MoviePointer_, RGBColor_IntegerList, Rect_IntegerListD
Fill the specified rect with the specified color 8r,g,b< H16 bits
eachL. The rect is defined relative to the window rect.If an empty
list is used, the rect of the first track in the movie will be used.";

QTMovieRectFill := qtMovieRectFill

‡ QTMovieScale

QTMovieScale::usage = "QTMovieScale@MoviePointer_,
Magnification_RealD Magnify or minify a movie.";

QTMovieScale@MoviePointer_, Magnification_D :=
qtMovieScale@MoviePointer, Magnification + 0.0D

24 ShowTime.nb

‡ QTMovieShow

QTMovieShow::usage = "QTMovieShow@MoviePointer_D Show a QuickTime
movie. MoviePointer is returned by QTMovieGetFromFile.";

QTMovieShow := qtMovieShow

‡ QTMovieWindowSet

QTMovieWindowSet::usage =
"QTMovieWindowSet@MoviePointer_, WindowPtr_IntegerD -Designate the window
in which the movie will play. The arguments are a MoviePointer and a
WindowPointer, as returned by QTMovieGetFromFile and QTWindowOpen.";

QTMovieWindowSet := qtMovieWindowSet

‡ QTScreenRectGet

QTScreenRectGet := qtScreenRectGet

QTScreenRectGet::usage =
"QTScreenRectGet@ScreenNumber_D Retruns the dimensions
of the specified screen as a rect.Coordinates are
relative to the upper left corner of screen 0."

‡ QTVideoTrackRectGet

QTVideoTrackRectGet := qtVideoTrackRectGet

QTVideoTrackRectGet::usage =
"QTVideoTrackRectGet@MoviePointer_,TrackNumber_D Get the
dimensions of a video track. Tracks are numbered from 1,
but if TrackNumber 0 is given, will use the first track.
Returns 8rect,8errorNumber,errorMessage<<. Possibilities are:

81,\"error no video track available\"<
82,\"error can't get video track #\"<
83,\"error can't get rect of track #\"< ";

ShowTime.nb 25

‡ QTWindowClose

QTWindowClose::usage = "QTWindowClose@WindowPointer_D
Close a window and restore the screen to its previous state.";

QTWindowClose := qtWindowClose

‡ QTWindowClutSet

QTWindowClutSet::usage =
"QTWindowClutSet@WindowPointer_ CLUT_IntegerListD : Load a
color look-up-table for a particular window. The list is in
the order 8r1,...,r256,g1,...,g256,b1,...,b256<.";

QTWindowClutSet := qtWindowClutSet

‡ QTWindowClutGet

QTWindowClutGet::usage = "QTWindowClutGet@WindowPointer_, Bits_IntegerD";

QTWindowClutGet := qtWindowClutGet

‡ QTWindowFill

QTWindowFill := qtWindowFill

QTWindowFill::usage =
"QTWindowFill@WindowPtr_, Color_D : Fill the specified window

with the specified 16 bit RGB color list, or default color using
an empty 8< list. Returns 8Null, 8ErrorNumber, ErrorMessage<<";

26 ShowTime.nb

‡ QTWindowOpen

QTWindowOpen::usage =
"QTWindowOpen@ScreenNumber_Integer, RGBColor_IntegerList,
Rect_IntegerListD Rect is in the form 8left, top, right, bottom<,
with vertical coordinates starting at screen top. The console is
screen number 0. Returns 8WindowPointer,8ErrorNumber,ErrorMessage<<.";

QTWindowOpen := qtWindowOpen

Making movies

‡ Overview

 The following is a basic outline of the library's use:

 Corresponding Function Calls

 1 QTMovieCreate -to create movie file.

 2 QTVideoTrackCreate -to create movie video track.

 3 QTVideoMediaCreate -to create movie video media.

 4 QTVideoMediaSamplesAdd -to add video media samples (frame(s) data).

 or QTVideoMediaSamplesAddGray 8-bit color or 8-bit grayscale.

 5 QTVideoMediaSave -to save movie video track.

 6 QTVideoTrackSamplesSet -to specify how media samples (frame(s) data)

 should be arranged in the video track.

 7 QTVideoTrackOffsetSet -OPTIONALLY specify an offset in the video track.

 8 QTVideoTrackSave -to save movie video track.

 9 QTMovieUserDataAdd -OPTIONALLY add user data annotations to movie.

 10 QTMovieSave -to save movie file.

* Please note that multiple tracks may be added to a movie by repeating steps 2-9 and multiple media samples may be
added to a single media (storage container) by repeating step 4.

** Only one media may be created per track.

ShowTime.nb 27

‡ QTMovieCreate

QTMovieCreate::usage = "QTMovieCreate@Filename_String,
WindowPointer_D ?? WindowPtr?? --not working maybe a bug?";

QTMovieCreate := qtMovieCreate

‡ QTVideoTrackCreate

QTVideoTrackCreate::usage =
"QTVideoTrackCreate@MoviePointer_,Rows_Integer,Cols_Integer,
Timescale_Integer,PreloadOptionBool_IntegerD Create a
video track within a movie. Rows and Columns specify
the size of a frame, and Timescale is specified in Hz.";

QTVideoTrackCreate := qtVideoTrackCreate

‡ QTVideoMediaCreate

QTVideoMediaCreate::usage = "QTVideoMediaCreate@MoviePointer_D";

QTVideoMediaCreate := qtVideoMediaCreate

‡ QTVideoMediaGraphicsModeSet

QTVideoMediaGraphicsModeSet::usage =
"QTVideoMediaGraphicsModeSet@MoviePointer_, GMode_Integer,
RGBColor_IntegerListD may be optionally called right after
adding any media with MLQTVideoMediaSamplesAdd to set
graphics mode for a particular media sample HframeHsL dataL.";

QTVideoMediaGraphicsModeSet := qtVideoMediaGraphicsModeSet

28 ShowTime.nb

‡ QTVideoMediaSamplesAdd

QTVideoMediaSamplesAdd::usage =
"QTVideoMediaSamplesAdd@MoviePointer_,ImageData_List, IsRGB_Integer,
ComponentSize_Integer, Rows_Integer, Cols_Integer, Frames_Integer,
DurationPerFrame_IntegerD Add a list of pixel values to a media.
Rows, cols, and Frames indicate the size of the added data,
while IsRGB indicates whether it is in color or grayscale.
Component size H8,16, 24?L indicates the word length of each
value. DurationPerFrame is in units of the track timescale.";

QTVideoMediaSamplesAdd := qtVideoMediaSamplesAdd

‡ QTVideoMediaSave

QTVideoMediaSave::usage =
"QTVideoMediaSave@MoviePointer_D Save media into a movie.";

QTVideoMediaSave := qtVideoMediaSave

‡ QTVideoTrackSamplesSet

QTVideoTrackSamplesSet::usage =
"QTVideoTrackSamplesSet@MoviePointer_, iStartInTrack_Integer,
iStartInMedia_Integer, iDurationInMedia_Integer, iMediaRate_IntegerD";

QTVideoTrackSamplesSet := qtVideoTrackSamplesSet

‡ QTVideoTrackSave

QTVideoTrackSave::usage = "QTVideoTrackSave@MoviePointer_D";

QTVideoTrackSave := qtVideoTrackSave

ShowTime.nb 29

‡ QTMovieUserDataAdd

QTMovieUserDataAdd::usage = "QTMovieUserDataAdd@
MoviePointer_, AnnotationText_String, AnnotationType_StringD";

QTMovieUserDataAdd := qtMovieUserDataAdd

‡ QTMovieSave

QTMovieSave::usage = "QTMovieSave@MoviePointer_D";

QTMovieSave := qtMovieSave

‡ QTMovieTrackOffsetSet

QTMovieTrackOffsetSet := qtMovieTrackOffsetSet

QTMovieTrackOffsetSet::usage =
"QTMovieTrackOffsetSet@MoviePtr_, TrackNumber_, iOffset_D : Sets a
time offset prepended to the begining of the track specified by
TrackNumber in the track's timescale. Set TrackNumber to 0 to offset
all movie tracks. Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

‡ QTMovieTrackOffsetGet

QTMovieTrackOffsetGet := qtMovieTrackOffsetGet

QTMovieTrackOffsetGet::usage =
"QTMovieTrackOffsetGet@MoviePtr_, TrackNumber_D : Gets the time
offset of the track specified by TrackNumber in the track'
s timescale. Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

‡ QTMovieTimescaleGet

QTMovieTimescaleGet := qtMovieTimescaleGet

30 ShowTime.nb

QTMovieTimescaleGet::usage =
"QTMovieTimescaleGet@MoviePtr_D : Gets the movie's
timescale. Returns 8Timescale, 8ErrorNumber, ErrorMessage<<.";

‡ QTMovieTimescaleSet

QTMovieTimescaleSet := qtMovieTimescaleSet

QTMovieTimescaleSet::usage =
"QTMovieTimescaleSet@MoviePtr_Integer, Timescale_IntegerD : Sets the
movie's timescale. Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

‡ QTVideoTrackOffsetSet

QTVideoTrackOffsetSet::usage =
"QTVideoTrackOffsetSet@MoviePointer_,TrackOffset_IntegerD Set
the offset of a track in units of the movie timescale. Halso
track timescale, since all tracks share the movie's timescale.L
You call this routine after calling QTVideoTrackSamplesSet."

QTVideoTrackOffsetSet := qtVideoTrackOffsetSet

Miscellany

qtMovieTimescaleGet@MoviePtrD

QTMovieTimescaleGet := qtMovieTimescaleGet

qtMovieTimescaleSet@MoviePtr, TimescaleD

QTMovieTimescaleSet := qtMovieTimescaleSet

qtMovieTrackOffsetGet@MoviePtr, TrackNumberD

ShowTime.nb 31

QTMovieTrackOffsetGet := qtMovieTrackOffsetGet

qtMovieTrackOffsetSet@MoviePtr, TrackNumber, OffsetD

QTMovieTrackOffsetSet := qtMovieTrackOffsetSet

Sound

These functions enable creation of Music tracks or movies. They are used by the high level function QTMusic. Look at
that function for an example of how to use these functions to create a music movie.

‡ QTMusicTrackCreate

QTMusicTrackCreate::usage =
"QTMusicTrackCreate@moviePointer_,Timescale_Integer,
PreloadOptionBool_IntegerD : Creates a music track for the movie
currently being edited. Timescale is in Hz. PreloadOption=1
prelads the track during playback for optimum performance. Preload=
0, doesn't preload. Returns 8Null, 8ErrorNumber, ErrorMessage<<."

QTMusicTrackCreate := qtMusicTrackCreate;

‡ QTMusicMediaCreate

QTMusicMediaCreate := qtMusicMediaCreate

QTMusicMediaCreate::usage =
"QTMusicMediaCreate@moviePointer_D : Creates a music
data media container for the music track currently being
edited. Returns 8Null, 8ErrorNumber, ErrorMessage<<."

‡ QTMusicMediaSamplesAdd

QTMusicMediaSamplesAdd@moviePointer_, notes_, instruments_D :=
qtMusicMediaSamplesAdd@moviePointer, Flatten@notesD, Flatten@instrumentsDD

32 ShowTime.nb

QTMusicMediaSamplesAdd::usage =
"QTMusicMediaSamplesAdd@MoviePointer_, Notes_, Instruments_D : Adds samples
to a music media. Notes is a list of notes and rests, where a note
is of the form 8instrument, pitch, volume, duration< and a rest is
of the form 80, 0, 0, duration<. The pitch is an integer from 0 to
127, where 60 is musical middle C H61 is C sharp, 59 is B, 72 is the C
above middle C, and so onL. The volume is an integer from 0 to 127 that
describes how loud to play the note; 64 is average loudness, 127 is
very loud, 1 is nearly inaudible, and 0 means to stop playing the note.
Instruments is a list of instruments, each of the form 8instrumentNumber,
Polyphony<. As an example instrumentNumber, 57 = Trumpet.

Returns 8Null, 8ErrorNumber, ErrorMessage<<."

‡ QTMusicMediaSave

QTMusicMediaSave := qtMusicMediaSave

QTMusicMediaSave::usage =
"QTMusicMediaSave@MoviePointer_D : Saves and concludes the
adding of music data to the media container currently being
edited. Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

‡ QTMusicTrackSamplesSet

QTMusicTrackSamplesSet := qtMusicTrackSamplesSet

QTMusicTrackSamplesSet::usage =
"QTMusicTrackSamplesSet@MoviePointer_, iStartTimeInTrack_Integer,
iStartTimeInMedia_Integer, iDurationInMedia_Integer,
fMediaRate_RealD : Embeds the QuickTime music media samples in
a track. iStartTimeInTrack is the offset from the start of the
track in units of the track timescale, iStartTimeInMedia is the
starting point within the media, iDurationInMedia is the portion
of the media to use, in track timescale units Huse -1 to include
entire mediaL. Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

‡ QTMusicTrackSave

QTMusicTrackSave := qtMusicTrackSave

ShowTime.nb 33

QTMusicTrackSave::usage =
"QTMusicTrackSave@MoviePointer_D Saves and concludes the
edits on the QuickTime music track currently being edited.
Returns 8Null, 8ErrorNumber, ErrorMessage<<.";

Enable Typo Warnings

On@General::"spell1"D

On@General::"spell"D

MIDI Codes

These are some tables of MIDI code values that can be used with QTMusic.

34 ShowTime.nb

‡ Table 1General MIDI Instrument Numbers

1 Acoustic Grand Piano

33 Wood Bass

2 Bright Acoustic Piano

34 Electric Bass Fingered

3 Electric Grand Piano

35 Electric Bass Picked

4 Honky-tonk Piano

36 Fretless Bass

5 Rhodes Piano

37 Slap Bass 1

6 Chorused Piano

38 Slap Bass 2

7 Harpsichord

 39 Synth Bass 1

 8

40 Synth Bass 2

9 Celesta

41Violin

10 Glockenspiel

42 Viola

11 Music Box

43 Cello

12 Vibraphone

44 Contrabass

13 Marimba

45 Tremolo Strings

14 Xylophone

46 Pizzicato Strings

15 Tubular bells

47 Orchestral Harp

16 Dulcimer

48 Timpani

17 Draw Organ

49 Acoustic String Ensemble 1

18 Percussive Organ

50 Acoustic String Ensemble 2

19 Rock Organ

51 Synth Strings 1

ShowTime.nb 35

51 Synth Strings 1

20 Church Organ

52 Synth Strings 2

21 Reed Organ

53 Aah Choir

22 Accordion

54 Ooh Choir

23 Harmonica

55 Synvox

24 Tango Accordion

56 Orchestra Hit

25 Acoustic Nylon Guitar

57 Trumpet

26 Acoustic Steel Guitar

58 Trombone

27 Electric Jazz Guitar

59 Tuba

28 Electric clean Guitar

60 Muted Trumpet

29 Electric Guitar muted

61 French Horn

30 Overdriven Guitar

62 Brass Section

31 Distortion Guitar

63 Synth Brass 1

32 Guitar Harmonics

64 Synth Brass 2

65 Soprano Sax

97 Ice Rain

66 Alto Sax

98 Soundtracks

67 Tenor Sax

99 Crystal

68 Baritone Sax

100 Atmosphere

69 Oboe

101 Bright

70 English Horn

102 Goblin

71 Bassoon

103 Echoes

36 ShowTime.nb

103 Echoes

72 Clarinet

104 Space

73 Piccolo

105 Sitar

74 Flute

106 Banjo

75 Recorder

107 Shamisen

76 Pan Flute

108 Koto

77 Bottle blow

109 Kalimba

78 Shakuhachi

110 Bagpipe

79 Whistle

111 Fiddle

80 Ocarina

112 Shanai

81 Square Lead

113 Tinkle bell

82 Saw Lead

114 Agogo

83 Calliope

115 Steel Drums

84 Chiffer

116 Woodblock

85 Synth Lead 5

117 Taiko Drum

86 Synth Lead 6

118 Melodic Tom

87 Synth Lead 7

119 Synth Tom

88 Synth Lead 8

120 Reverse Cymbal

89 Synth Pad 1

121 Guitar Fret Noise

90 Synth Pad 2

122 Breath Noise

91 Synth Pad 3

123 Seashore

ShowTime.nb 37

123 Seashore

92 Synth Pad 4

124 Bird Tweet

93 Synth Pad 5

125 Telephone Ring

94 Synth Pad 6

126 Helicopter

95 Synth Pad 7

127 Applause

96 Synth Pad 8

128 Gunshot

‡ Table 2General MIDI Drum Kit Numbers

35 Acoustic Bass Drum

51 Ride Cymbal 1

36 Bass Drum 1

52 Chinese Cymbal

37 Side Stick

53 Ride Bell

38 Acoustic Snare

 54 Tambourine

39 Hand Clap

 55 Splash Cymbal

40 Electric Snare

56 Cowbell

41 Lo Floor Tom

57 Crash Cymbal 2

42 Closed Hi Hat

58 Vibraslap

43 Hi Floor Tom

59 Ride Cymbal 2

44 Pedal Hi Hat

60 Hi Bongo

45 Lo Tom Tom

61 Low Bongo

46 Open Hi Hat

62 Mute Hi Conga

47 Low -Mid Tom Tom

63 Open Hi Conga

 48 Hi Mid Tom Tom

38 ShowTime.nb

 48 Hi Mid Tom Tom

64 Low Conga

 49 Crash Cymbal 1

 65 Hi Timbale

 50 Hi Tom Tom

 66 Lo Timbale

Known problems or limitations

Grayscale is reversed (0=white, 255=black) in grayscale movies.

Currently requires about ? bytes of memory per number transferred. The memory must be allocated to the qtwrite applica-
tion using the standard MacOS Finder Get Info->Memory dialog. We hope to reduce this memory requirement in the near
future.

Offset appears not to work for a single track movie.

If the filename is currently in use by another application (eg QuickTime Player) then the file will not be written, and no
error message will be given.

If QTOpen follows immediately after QTClose, you may get an error: "LinkOpen::linke: MathLink error: cannot launch
the program again from the same file". A work-around is to put a one second pause between the two functions.

If QTShow is called before QTWrite is finished, you may get an error.

Notes on CLUTs

In the current version of ShowTime, each pixel in the movie {r,g,b}, with values in the range 0-255, is mapped to color
{clut[[r+1,1]],clut[[g+1,2]],clut[[b+1,3]]} (also in the range 0-255) before delivery to the display. The dimensions of the
clut are thus {256,3}. The default is a table consisting of the integers 0-255, repeated three times (clut=Transpose[Table[-
Range[0,255],{3}]]). This is an identity transformation.

Color look-up-tables (cluts) can be used within ShowTime to "linearize" the display, as well as to manipulate the contrast
or color of an otherwise fixed movie. For example, asuming that the display has a "gamma function" with an exponent of
2.2, we create a clut to linearize the display and present the stimulus at 75% contrast.

clut0 = Round[255 (((128 + 0.75 (Range[0,255]-128))/255)^(1/2.2))];

ListPlot[clut0,PlotRange->{{0,255},{0,255}},Frame->True];

clut = Transpose[{clut0,clut0,clut0}];

ShowTime.nb 39

QTShow@"gabor.mov", CLUT -> clut D;

movieRect = 80, 0, 256, 256<
In actual use, a more accurate model of the display gamma function may be required, but that is beyond the scope of this
tutorial. Likewise, cluts may be designed for use with the ISR video attenuator. Contact the author for more details
(abwatson@mail.arc.nasa.gov) or see http://vision.arc.nasa.gov/modelfest/calibration/.

Another use of cluts is to modulate stimuli in various color directions. In this table, blue is always 128, while red and
green move in opposite directions, to yield red-green modulation.

clut = Table[{255-c,c,128}, {c,0,255}];

Dimensions@clutD

8256, 3<

QTShow@"gabor.mov", CLUT -> clut D;

movieRect = 80, 0, 256, 256<
You should have seen a red/green modulated Gabor. This illustrates how the clut can be used to determine the direction in
color space in which the stimulus modulations occur.

Notes on Graphics Modes

When combining several tracks, the user may set the GraphicsMode option. By default, this is Blend. This setting associ-
ates a weight with each track and yields a weighted linear combination of the tracks. The weights work as follows. If there
is one track t1 and its weight w1, the result is r1 = w1 t1 + (1-w1) t0. The t0 is defined to be 50% gray ({128,128,128} for
8 bit pixels). If there are two tracks, the result is r2 = w2 t2 + (1-w2) r1, and so on.

This function mimics QuickTimes method of blending a source and a destination movie.

blend@destination_, source_, weights_D := Round@
Map@ Hweightsê65535L * # &, source, 83<D

+
Map@ H1 - weightsê65535L * # &, destination, 83<D

D

This function combines an arbitrary number of movies and their associated weights, and then displays the result.

40 ShowTime.nb

showblend@movies_, weights_D := Module@8<,
movie0 = 0 movies@@1DD + 128;
ShowMovie@tmp = Fold@blend@#1, Sequence ûû #2D &

, movie0
, Transpose@8movies, weights<DDDD

Now we create a pair of single frame movies, each 2x2 pixels, one with the bottom two pixels white and the top two black,
and the other movie the same but rotated 90 degrees. This allows us to see all combinations of white and black pixels in
the combined movie.

w = Table@255, 82<, 82<, 83<D;
movie1 = 8881, 0<, 81, 0<< w<;
movie2 = 8880, 0<, 81, 1<< w<;

Here we simulate the blended combination, for a particular pair of weights.

showblend@8movie1, movie2<, Round@H2^16 - 1L 881, 1, 1<, 81, 1, 1<<DD;

To see that QuickTime yields the same result, we write out the same movies and weights. This can then be looked at with
QuickTime Player. The movie is only 2 pixels tall, so you will need to drag the corner of the viewer to magnify the image.

QTWrite@"test.mov", 8movie1, movie2<, MultiTrack Æ True
, BlendWeights Æ Round@8H2^16 - 1L 81, 1, 1<, H2^15L 81, 1, 1<<DD

Not Ready for Prime Time

Questions, Problems, Suggestions

ShowTime.nb 41

