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Effects of Synaptic Depression
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Effects of Depression on
Inhibitory Cell Tuning

Mean Inhibitory Cell Firing Rate
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With Depression
• Total LGN Input to Simple Cell has 2 terms: F1 

and DC 
• F1 is tuned to orientation, DC is untuned 
• Both terms increase with increasing contrast 
• Strong untuned DC term causes problem for 

orientation tuning at high contrast 

• “Push-Pull” inhibition counteracts untuned DC 
from LGN 

• Achieves contrast invariant orientation tuning for 
cortical excitatory cells 

• Inhibitory cells follow tuning of LGN: sum of 
tuned F1 term and untuned DC term 

• Correlation-based connectivity derived from 
developmentally motivated learning rules for 
intracortical synaptic connections 

• Excitatory connections between cells with 
correlated receptive fields: same orientation and 
same spatial phase 

• Inhibitory connections between cells with anti-
correlated receptive fields: same orienatation and 
opposite spatial phase 

• Synaptic depression model follows the model 
of Abbott et al, 1997. 

• First spike in a spike train elicits strongest post-
synaptic potential 

• Synaptic strength weakens with each spike in 
rate dependent manner 

• Synapses return to full strength with time 
constant ~ 100 msec 

• Synaptic depression filters DC more than F1, 
particularly at low temporal frequencies 

(Troyer et al., 1998)

• Synaptic depression reduces the DC of the LGN 
input, particularly at low temporal frequencies 

• This reduces the untuned “platform” of the mean 
inhibitory cell spiking response, in particular, 
reducing the high contrast response to the null 
orientation 

• Depression reveals stronger inhibitory cell 
orientation tuning at low temporal frequencies 

(Krukowski and Miller, 2001)

• Including NMDA in thalamocortical synapses 
reduces F1 of LGN input, and therefore lowers 
cortical firing rate, at higher temporal 
frequencies 

• This induces low-pass shift in cortical temporal 
tuning relative to LGN temporal tuning 

• Temporal frequency tuning of mean inhibitory 
cell firing rate follows the temporal tuning of DC 
of LGN input, as for orientation tuning 

• With feedback excitatory connections, some of 
the temporal tuning of the cortical excitatory 
cells is inherited by the inhibitory cells 

• Synaptic depression shifts tuning slightly 
towards higher frequencies, again by suppressing 
DC response at lower frequencies 

• Inhibitory cells have high back ground firing 
rate, so they do not reach 0 spikes/sec, even in 
response to stimuli that elicit strong F1 response 

• Therefore, DC firing rates closely follow DC of 
LGN input and ignore the F1 of LGN input 

• Mean firing rates are not orientation tuned 
without feedback excitation from cortical 
excitatory cells.  These connections do not 
significantly effect model response in any other 
way. 

Conclusions

• Recent results (Hirsch et al., Soc for 
Neuroscience Abstracts 408.7, 2000) have 
revealed orientation tuning of inhibitory simple 
cells in response to bars.  Further tests with 
gratings, particularly at high temporal 
frequencies, could reveal stronger comparisons 
to model results. 

• Carandini (unpublished results) has reported 
cross-orientation inhibition with temporal 
frequency tuning that resembles LGN temporal 
tuning more closely than cortical excitatory cell 
tuning, reminiscent of the temporal tuning of the 
inhibitory cells of our model. 

Experimental Comparisons

Further Analysis
• Modulation (or F1) of the firing rate of inhibitory 

cells will be tuned for orientation, even without 
the feedback excitatory input.  We need to fully 
analyze the degree of this tuning in different 
parameter regimes to make a clear prediction. 

• Other parameter regimes where there is more 
significant inhibitory cell may effect orientation 
tuning as well. 

• More complete analysis of the effect of the I->I 
connections is needed. 

• Synaptic depression can significantly reduce the 
originally predicted untuned “platform” in 
inhibitory cell orientation tuning curves, 
particularly at lower temporal frequencies.  This 
platform should reappear at higher temporal 
frequencies. 

• Inhibitory cell temporal frequency tuning should 
follow the LGN tuning at higher frequencies.  
The degree of low frequency response is 
parameter dependent. 

• Feedback excitatory to inhibitory connections 
partially pass excitatory cell orientation and low-
pass temporal tuning onto inhibitory cells 


