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Separability of Spatiotemporal Spectra of Image Sequences

Michael P. Eckert, Gershon Buchsbaum, and Andrew B. Watson

Abstract— We calculated the spatiotemporal power spectrum of 14
image sequences in order to determine the degree to which the spectra are
separable in space and time and to assess the validity of the commonly
used exponential correlation model found in the literature. We expand
the spectrum by a singular value d position into a sum of separable
terms and define an index of spatiotemporal separability as the fraction of
the signal energy that can be represented by the first (largest) separable
term. All spectra were found to be highly separable with an index of
separability above 0.98. The power spectra of the sequences were well fit
by a separable model of the form

_ . ab/(4m%)
P D) = (agam® 1 k2073 (of2m2 + 72

where k is radial freq y, [ is t al freq y, and a,b
are spatial and temporal model parameters that determine the effective
spatiotemporal bandwidth of the signal. This power spectrum model cor-
responds to a product of exponential autocorrelation functions separable

in space and time.
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I. INTRODUCTION

The statistics of images and image sequences have been extensively
studied for image coding and compression applications [1], [2] as
well as for the development of models of biological image processing
[3], [4]- An exponential autocorrelation function has been shown to
be a good model for temporal frame-to-frame correlations of image
sequences, €.8., [S]-[8], and for spatial correlations within each frame,
eg. (2], 3], [9).

This paper focuses on the separability of the spatiotemporal sta-
tistics of image sequences and on the validity of using a separable
exponential autocorrelation model for the spatiotemporal statistics.
The autocorrelation function is uniquely related to the power spectrum
via a Fourier transform, and either is valid as a description of the
statistics.

The spectra of 14 image sequences were calculated. The sequences
represented a small ensemble of possible motion activity. The se-
quences were selected for a range of motion activity. For example, a
fast camera pan represents the maximum image motion activity, and
a small moving object with a static background represents the least
activity. Sequences with motion activity between these extremes had
slight camera motion and some object motion.

II. CALCULATION OF IMAGE STATISTICS

We collected 14 image sequences (256 x 256x 64 @ 8 b/pixel, 30
frames/s with no scene cuts) from a video disc that contained scenes
from a broadcast TV source. Each frame was originally sampled at
512 x 512 pixels/screen, but adjacent pixels were averaged, and the
image was subsampled to 256 x 256 pixels/screen. The sample mean
of each sequence was removed to reduce low-frequency bias in the
calculations.

The sample power spectrum P(ky, ks, f) of each sequence
z(n1,m2,t) is the squared magnitude of the discrete Fourier
transform calculated as
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where ki,ko are spatial frequencies, f is temporal frequency, ni,n2
are spatial locations, and ¢ is time measured in frame number.

We converted the two spatial frequency dimensions ; and k2 into
one radial frequency dimension k by averaging in 32 annuli around
the spatial frequency origin as illustrated in Fig. 1. In this manner,
the spatial frequency range of 0~127 cycles/screen of ki and k2 is
represented by 32 annuli in bands of 4 cycles/screen. Averaging the
spatial spectra in annuli is equivalent to assuming a circularly sym-
metric spatial autocorrelation function. This autocorrelation function
is not separable in the two spatial dimensions but is considered a
better fit than the corresponding separable autocorrelation function
for most images [9].

The average magnitude of the power spectrum in each annulus can
be obtained by summing over the power spectrum P(ki, k2, f) in
the annulus indexed by k& and normalizing by the number of sample
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Fig. 1. Conversion from two dimensions of spatial frequency to one dimen-
sion of radial spatial frequency is done by averaging the spectrum in annuli
around the spatial frequency origin.

points A(k) within each annulus
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The resulting 14 sample spectra were described in terms of a 33
(temporal frequency) x 32 (spatial frequency) matrix P with the
spatial frequency axis ranging from 0-127 cycles/screen in steps
representing bands of 4 cycles/screen and the temporal frequency
axis ranging from 0-15 Hz in steps of 15/32 Hz each.

III. MODELS OF SPACE-TIME STATISTICS

The most commonly used statistical model for intraframe and
frame-to-frame correlations is an exponential correlation model in
both space and time

R(v) = e~ (4)

®)

where v represents a 2-D spatial lag, T represents temporal lags,
and a,b are spatial and temporal parameters. A separable formulation
for the spatiotemporal correlation of image sequences is found as a
product of (4) and (5). An equivalent description of the statistics is
the power spectrum, which for the exponential correlation function
of (4) and (5) would be

R(r)=etl"l
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where k is radial spatial frequency, f is temporal frequency, a is
a spatial parameter with units of cycles/screen, and b is a temporal
parameter with units of Hertz. The parameters @ and b describe the
effective spatial and temporal bandwidth of the signal. A spatial
power spectrum (6) has 85% of its power in the frequency band
k < a. The temporal power spectrum (7) has 90% of its power in the
band f < |b|. A separable spatiotemporal power spectrum is formed
as the product of (6) and (7).
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IV. SINGULAR VALUE DECOMPOSITION AND INDEX OF SEPARABILITY

A space-time separable spectrum is modeled as the product of a
spatial and temporal spectrum (as in (8)). In this section, we define
an index of separability for an arbitrary spectrum P(k, f) based on
a singular value decomposition.

Any m x n matrix D with m > n may be expanded into a sum
of terms by a singular value decomposition [10], {11]

n
D= Z Yivin
i=1

where A\; > X2 > ...\, are the real nonnegative eigenvalues of the
nth-order symmetric matrix § = DTD.uy,u3,...u, are normal-
ized, orthogonal row eigenvectors associated with the corresponding
eigenvalues Ay > X2 > ...\, of §. v1,v2,...v, are normalized,
orthogonal column eigenvectors associated with the corresponding
eigenvalues A > Az > ..., of the mth-order symmetric matrix
Q = DD”, where Q can have a maximum of n nonzero eigenvalues
that are the same as those of S. In the case of duplicate eigenvalues,
an orthonormal combination of eigenvalues can be selected.
Approximating D by the first term of the decomposition

D' = /[iviwm (10)

gives the minimum mean squared error separable approximation to
D, where the mean squared error is

Y (@-da),
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where d;; and d; are the elements of D and D', respectively. Noting
that

DD d
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and
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the mean square error between the approximate matrix D' and the
true matrix D is determined by the eigenvalues as

e=v2+v+...Tn. (13)

We define an index of separability « as the relative energy share
of D

"

= —_— 14
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Since A1 > A2 > ...A» > 0, o will range from 1/n for the
most inseparable spectrum to 1 for a completely separable spectrum.
The eigenvalues represent the energy carried by each term of the
expansion in (9). The index of separability o is simply the fraction of
the total energy carried by the first and largest term in the expansion,
which is the term that constitutes the best separable approximation.

We applied the singular value decomposition to the spatiotemporal
spectra by considering each spectrum as a matrix P of dimension
33 x 32. As shown in (9), P can be expanded as

32
P=Y" /[yt (15)

i=1

where s; are now orthonormal row vectors representing spatial
spectra, and ¢; are orthonormal column vectors representing temporal
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TABLE I
DESCRIPTION OF IMAGE SEQUENCES AND RESULTS OF CALCULATIONS.

Sequence Motion  Index of Spatial  Temporal
Number  Type Separability Parameter Parameter mse (%)
a a b

1 1J01300 l,a 0.999 14.33 0.59 0.01
2 1J04454 Lb 0.999 7.54 0.51 0.04
3 1310833 2,a 0.993 9.45 1.08 0.09
4 1J10897 2,3 0.995 9.42 1.30 0.07
5 11907 l,c 0.999 6.91 3.50 4.70
6 112100 1,2 0.999 15.80 0.41 0.03
7 1112164 1,b 0.999 13.85 0.92 0.06
8 1712426 2,b 0.998 8.10 0.92 0.04
9 1J14461 3,a 0.998 6.00 4.30 0.70
10 1J15300 3,b 0.997 8.93 2.99 4.10
1 117830 lc 0.982 12.30 2.32 0.40
12 1J07860 lc 0.993 11.50 1.85 0.60
13 1333960 la 0.999 10.20 0.24 0.005
14 1330229 1,b 0.999 12.40 0.85 0.06

a : Index of separability, unitless
a :Spatial parameter, cycles/screen
b : Temporal parameter, Hertz
mse : The mean squared error between the actual spectrum and the mode! with the parameters
a,bof Eq. 8. The mse is expressed as the percentage of the average power of the
sequence.

1. No camera motion
2. Some camera motion
3. Much camera motion
a. Little object motion
b. Some object motion
¢. Much object motion

spectra in each term of the sum. A separable approximation of the
form

P = Vtis; (16)
exists where s, and t; represent the spatial and temporal components
of the separable approximation. The normalized energy share of this
term is o, which is the index of separability. Examination of « for
the spatiotemporal spectra of the 14 image sequences (Table I) shows
that for 13 out of the 14 sequences, @ > 0.993, which constitutes
a high degree of separability [10]. Although the separability was
low for one sequence,(o: = 0.982). This suggests that a space-
time separable model such as (8) may adequately describe the
spatiotemporal spectrum of image sequences since the assumption
of separability is valid. The extraction of nearly all the energy with
the separable term is also significant for perceptual reasons since
small fractions of image energy can markedly affect the perception
of some images [12].

V. CALCULATION OF MODEL PARAMETERS

Since the spatiotemporal spectra of the image sequence P are all
highly separable, we need only determine whether the model of (8)
adequately characterizes the frequency distribution of the spectra and
find the spatial and temporal parameters a and b. This will determine
whether the commonly used model defined by a separable exponential
autocorrelation in space and time is satisfactory.

We find the model parameters a and b by minimizing the mean
squared error between the actual signal spectra P of (2) and the
analytical separable model of (8).

min [(P - P(k, f))?]. %)

The optimal parameters a,b for each of the sequences were calculated
using the Nelder-Meade simplex algorithm [13]. The mean squared
error between the analytical separable model (8) and the true spec-
trum, which was expressed as a percentage of the average squared
power of the spectrum, is small (0.03% < mse < 4.7%) and is given in
Table 1. The parameters a and b determine the effective bandwidth for
the spatiotemporal power spectrum. Fig. 2 illustrates the relationship
between the parameters a and b for all 14 sequences, and thus, the si-
multaneous spatial and temporal bandwidths. All of the pairs of a and
b are located within a well-defined range for this ensemble such that
no sequence contains both high spatial and high temporal frequencies.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 12, DECEMBER 1992

b
N S
T
= 9
"
g 4 ] ]
g ¥
a8 3l L 1
oy
s *11
g 2} 12 ]
] x
= 4
e g X 7
g 1} 3 x B ]
g i 13 Yo
= 0 X *

6 8 10 12 14 16 4

Spatial frequency Bandwidth (cycles/screen)

Fig. 2. Scatter plot of the parameters a and b for all sequences. The
parameters a and b are measures of the effective spatial and temporal
bandwidths of the signal spectrum. No spectrum had both a large spatial and
large temporal bandwidth within the spatial and temporal frequency spans of
the sequences.
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Fig. 3. Magnitude of the spatial component of the spectrum derived by the
singular value decomposition (stars) compared with the analytical model (solid
line). (Note different ordinate scales.)

The separable kernel in the model of (8) is based on theoretical
considerations, mainly, statistical properties of Markov processes
as models for image signals. It is interesting to investigate how
this theoretical separable model captures the functional shape of
the spectra in spatial and temporal frequency compared with the
empirically derived separable kernels derived by the singular value
decomposition. The empirically derived kernels are not constrained
by a predetermined functional shape as is the theoretical model.
We compare the spatial and temporal components of the analytical
separable model to the corresponding components of the separable
approximation (16). Four examples are shown in Figs. 3 and 4.
The model provides a good fit for the sample signal spectra in all
frequency ranges. (Note that the ordinate scale is logarithmic, and
therefore, the contribution to the mean squared error is small at
high frequencies.) This finding is consistent with the applicability
of the models of (6) and (7) in earlier studies of spatial and temporal
statistics [2], [5], [7]-[9].
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Fig. 4. Magnitude of the temporal component of the spectrum derived by
the singular value decomposition (stars) compared with the analytical model
(solid line). (Note different ordinate scales.)

VI. DISCUSSION

We calculated the spatiotemporal power spectra of 14 image
sequences to investigate whether these spectra are separable in space
and time. Using a normalized index of separability, we show that
a separable approximation for the spectra derived from the singular
value decomposition extracts over 98% of the signal energy (Table
I). We also investigated whether the space-time separable exponential
model commonly used in the literature provides a reasonable descrip-
tion of the statistics of image sequences. This exponential model is
equivalent to the space-time separable power spectrum model of (8).
We show that this model provides a good analytical description of
the spectrum of image sequences.

For this ensemble of image sequences, no sequence possessed both
high spatial and high temporal frequencies (Fig. 2). This property
may be a result of spatial blurring caused by motion. If so, it is
not an inherent property of the image sequence but rather is caused
by the low-pass temporal filtering of the camera. The visual system
also temporally low-pass filters images (mainly due to photoreceptor
integration time); therefore, this property holds true for a signal
perceived by the visual system as well. This limitation on signal
spatiotemporal bandwidth may be useful for perceptually based image
coding and processing applications [14].

Applications of the model to image processing accrues both
the advantages and limitations of using autocorrelation and power
spectrum methods. As descriptions of images, the autocorrelation
and power spectra are global in the sense that they represent a
calculation averaged over the entire image or image sequence. This
averaging does not retain the phase spectrum of images and removes
local nonstationarities and, hence, specific local details of images.
In addition, the separable model may not apply to local sections of
image sequences even though the global spectrum of the sequence
is separable. In those cases where the autocorrelation and power
spectrum methods are applicable, the assumption of separability
enables considerable mathematical simplicity. Any methods of image
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processing developed for spatial-only or temporal-only processing
using (6) and (7) can be extended in a straightforward manner to
spatiotemporal processing with (8).
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