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Many models of visual performance predict image discriminability, the visibility of the difference
between a pair of images. We compared the ability of three image discrimination models to predict
the detectability of objects embedded in natural backgrounds. The three models were: a multiple
channel Cortex transform model with within-channel masking; a single channel contrast sensitivity
filter model; and a digital image difference metric. Each model used a Minkowski distance metric
(generalized vector magnitude) to summate absolute differences between the background and
object plus background images. For each model, this summation was implemented with three
different exponents: 2, 4 and cc. In addition, each combination of model and summation exponent
was implemented with and without a simple contrast gain factor. The model outputs were
compared to measures of object detectability obtained from 19 observers. Among the models
without the contrast gain factor, the multiple channel model with a summation exponent of 4
performed best, predicting the pattern of observer d’s with an RMS error of 2.3 dB. The contrast
gain factor improved the predictions of all three models for all three exponents. With the factor, the
best exponent was 4 for all three models, and their prediction errors were near 1 dB. These results
demonstrate that image discrimination models can predict the relative detectability of objects in
natural scenes. Published by Elsevier Science Ltd
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Modeling  Natural images

INTRODUCTION

One important areca of applied vision research is the
development of methods for assessing the quality of
imaging displays for the detection and recognition of
objects. We have been developing computer programs to
help engineers evaluate the quality of simulated imaging
displays for runway obstacle detection by the pilot. The
standard modeling approach would be to construct a
computer model for object detection and apply it to the
simulated images. A general object detection model
would simulate search and pattern recognition in the
presence of noise and clutter.

Here we evaluate a simple approach that ignores all the
visual issues other than masking and takes advantage of
the fact that the images are simulated. Our approach is to
predict object detection performance by using image
discrimination models to predict the visibility of an
object added to a fixed background image. Situations can
be such that the ignored factors can dominate, but if the
discrimination analysis says that the display will not be
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adequate, the other factors can only make it less
adequate.

There are a number of image discriminability models
for predicting the visibility of the difference between a
pair of images. [For reviews and collections of such
models see Ahumada (1993), Watson (1993) and Peli
(1995).] We show that discrimination models can predict
the relative detectability of objects in different images,
suggesting that these simpler models may be useful in
some object detection and recognition applications. Here
we compare three models that give measures of image
discriminability. The first is a multiple spatial frequency
channel model based on the Cortex transform with
within-channel masking (Watson, 1983, 1987a,b). It is
similar to the models of Lubin and Daly (Lubin, 1993;
Daly, 1993). The second is a single channel contrast
sensitivity function (CSF) filter model. The third model
bases its predictions simply on the difference between the
digital images. Each model was tested with three
different Minkowski summation (generalized vector
magnitude) exponents: 2, 4 and co. The exponent of 2
corresponds to the familiar Euclidean distance metric, the
exponent of 4 to an approximation to probability
summation (Quick, 1974) and the exponent of oo to the
maximum or peak absolute difference.

The multiple channel models referred to above treat the
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OBJECT DETECTION IN NATURAL BACKGROUNDS

white version of an original image. Figure 2 shows
cropped versions of all six original and background
image pairs. Test images were constructed from each
image pair by adding a proportion p of the difference
between the original and background images to the
background image.

T, =B +p(O;—-B;),i=1,6.

Two of the mixing proportions p were 0 and 1, giving the
background and original images, respectively. For each
image pair, two more proportions were selected to give
test images with moderately detectable vehicles. For
image pair | (Fig. 2), these proportions ( p) were 0.6 and
0.8; for pairs 2, 3 and 4, they were 0.4 and 0.6; and for
pairs 5 and 6 they were 0.375 and 0.5. The 510 x 480
pixel images were presented on a 13" Macintosh color
monitor at a viewing distance giving 95 pixels per degree
of visual angle and an image size of 5.33 x 5.05 deg. The
mean luminance of the images was ca 10 cd/m?. When an
image was not present, the screen was filled with random
amplitude gray scale pixels, uniformly distributed over
the digital domain interval [0, 255].

Observers. The observers were 19 male soldiers, aged
18-32 yr. Their acuities were 20/20 or better and they had
normal color vision.

Procedure. Observers were asked to rate each of the 24
images (six original images at four levels of object
detectability each) on a four-point rating scale according
to the following interpretation:

I. A target was definitely in the scene.

2. There was something in the scene that probably was
a target.

3. There was something in the scene but it probably
was not a target.

4. There was definitely no target in the scene.

One group of 10 observers saw each image 20 times at
a duration of 1.0 sec. A second group of nine observers
saw each image 10 times at a duration of 0.5 sec and 10
times at a duration of 2.0 sec*. The total sequence of 480
images was completely randomized separately for each
observer.

DATA ANALYSIS

The distance '; in discriminability units from each
object image to its non-object image was measured in the
context of a one-dimensional Thurstone scaling model
(Torgerson, 1958). The scaling model had the following
assumptions:

*This experiment was conducted at an earlier date as part of another
research project with different objectives. The different stimulus
durations represent manipulations necessary to test hypotheses
specific to the previous investigation and are not directly relevant to
the goals of the present study.
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e The presentation of an image generates an internal
value that is a sample from a normal distribution
with unit variance.

e The mean of the distribution generated by a
background image Tj ; is zero.

o The mean of the distribution generated by an
original object image T ; is d';.

e The mean of the distribution generated by an image
T[,,l‘ 1 pd’i.

e Means for different images are the same for
different observers except for a multiplicative
observer sensitivity factor.

e Each observer has three fixed criteria that are used
to categorize an internal value to one of the four
rating responses.

The scaling model for this experiment had five d'
parameters (the ratios among the six d’ values) for each
group of observers, plus one sensitivity factor and three
category boundaries for each observer. Each observer in
the group tested with the two different stimulus durations
was given two sensitivity factors. Parameters were
estimated by the method of maximum likelihood.
Estimates of d' for the six image sets were computed
separately for the 10 observers given 1.0 sec durations
and the nine observers given the 0.5 and 2.0 sec
durations. The median observer sensitivity factor for
each group was arbitrarily assigned to be unity.

RESULTS AND DISCUSSION

Estimates of ¢ for the six image sets are shown in Fig.
3 for both groups of observers. For the 10 observer group
(open squares), the ratio of the highest observer
sensitivity factor to the median factor was 1.5 and to
the lowest factor was 3.3. For the nine observer group
(open circles), these ratios were 1.9 and 4.1, respectively.
For this group, the sensitivity factors estimated for the
two stimulus durations were neither appreciably nor
significantly different. In addition, the d' values for the
two groups of observers were very similar, both in pattern
and average level. The filled circles in Fig. 3 are the
geometric means of the two group values and the error
bars indicate 95% confidence intervals based on the
group by image interaction with 5 d.f. Strictly speaking,
these are confidence intervals for the difference between
the mean for an image and the overall mean, a pattern
difference appropriate for comparisons with model
predictions of the d’ pattern when the average model d'
has been forced to fit. Based on this interaction, the
estimated standard deviation of the geometric means is a
factor of 1.06 or 0.50 decibels (dB; 20 dB = 1 log unit).
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FIGURE 3. Discriminability indices (d") for the six image pairs of Fig.

2 estimated from the data of Experiment 1. [, Values estimated for the

10 observers given 1.0 sec durations; O, values estimated for the nine

observers given the 0.5 and 2.0 sec durations. Error bars represent 95%

confidence intervals for the mean of the two groups of observers based

on the variance between the groups. @, Geometric means of the two
group values (used to gauge model performance).

calculation, the exponentiation and other operations are
applied separately to each pixel of the image. Next the
images were converted to luminance contrast by
subtracting and then dividing by the background image
mean luminance I,

I — (I; = Io) /To. (2)

A contrast sensitivity filter S was then applied to the two
contrast images.

I — F'[SF[L], (3)

where F and F~! are the forward and inverse Fourier
transforms, respectively. Next, the Cortex transform
(Watson, 1987a, 1987b) was applied to the images,
resulting in 20 images of cortex coefficients, correspond-
ing to the combination of five spatial frequency channels,
each spanning 1.0 octave of spatial frequency, and four
orientation channels, each spanning 45 deg. Each spatial
frequency channel below the highest one was subsampled
by a factor of 2 in each spatial dimension. Here we
represent the coefficients for image I; as c; x, where the
index k ranges over four dimensions, one for the spatial
frequency octave, one for the orientation, and two for the
spatial position within the filtered image. The detect-
ability d; contributed by each coefficient was then
computed by taking the absolute differences of the
background and object image coefficients reduced by the
background image coefficient,

di = lerk — okl ' (4)

max(l7 \co,k|0'7>

This function accounts for the discriminability of
increments in suprathreshold grating contrast, ignoring
the “dipper” effect (Legge & Foley, 1980). Finally, d'
was given by a Minkowski sum of the individual
contributions with summation exponent f3,

A. M. ROHALY et al.

1/
= d (5)
k

For the case f§ = o0, d’ was computed as the largest of the
dg.

Single channel model. For the single channel model,
the steps were the same through the image filtering
[equation (3)], then the filtered image values were used to
compute

dr = |k — o, ks (6)

where the index k now refers to image pixels. Equation
(5) was then used to obtain d'.

Image difference metric. For the image difference
metric, equation (6) was applied directly to the digital
images and then equation (5) was applied.

Contrast gain factor. Because our multiple channel
model is already computationally intensive, we used a
relatively simple contrast gain factor to account for
masking effects among different spatial frequencies. Our
method was to multiply the d' predictions by

v 7)
1+ (c/co)?

where ¢ is the RMS background image contrast passed by
the contrast sensitivity filter and ¢y is a parameter
estimated from the data. For the digital image difference
metric, ¢ is the standard deviation of the background
image pixel values.

For each model and summation exponent f§, a best
fitting ¢y was chosen based on the standard error of
prediction in the log sensitivity domain, allowing an
arbitrary scale factor. As ¢o becomes small, equation (7)
approaches co/c. When the best estimate of ¢y was zero,
we divided 4 by ¢ to obtain a contrast normalized
prediction. Also, to compute ¢, the contrast sensitivity
filter was normalized to unity at its peak. Note that an
implicit parameter of this contrast gain factor is the size
of the region over which contrast is computed. In this
case it was a 2.7 deg square (i.e. the entire image).
However, recent attempts to measure the spread of
masking from background regions to a target found no
measurable spread (Snowden & Hammett, 1995; Solo-
mon & Watson, 1995). If masking is truly local, the
estimation of the background masking parameter from
the entire image would be appropriate only when the
background is spatially homogeneous.

Linearization. These models are linearized versions of
more general models in which the contrast and masking
calculations are done for each image separately (Ahu-
mada, 1987; Girod, 1989). These simplified versions
have the property that discriminability is linear in the
amount of the difference image that is added to the
background. The linearized models thus satisfy the
second assumption of the above observer response
scaling model (see Experiment 1, Data Analysis).
Linearization is accomplished by using the background
image luminance to convert from luminance to contrast
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[equation (2)] and by using the background image for the
masking calculations [equation (4)]. The model predic-
tions thus need to be computed for only one level of
object detectability.

Contrast sensitivity filter calibration. In general, if the
same contrast sensitivity filter is used in different models
or in the same model with different summation
exponents, different predictions will result for the same
input images. We arbitrarily decided to calibrate the
models to predict contrast thresholds for 1.33 deg square
grating patches at five spatial frequencies centered in
each of the five bandpass channels of the multiple
channel model. Instead of using the results of a single
contrast sensitivity measurement, we calibrated to the
predictions of Barten’s CSF formula, whose parameters
were adjusted to fit the data from a number of
experiments (Barten, 1993).

The contrast sensitivity filters were restricted to have a
difference of Gaussian form

S'(f) = d.CXp (1 asexpi(f/ﬂ)za (8)

where a. and g are the center and surround amplitudes
and f. and f; are the center and surround high frequency
cutoffs. Parameters were estimated by least squares fits to
simulation outputs in the log threshold domain ignoring
quantization and windowing effects. The contrast
sensitivity filters were calibrated separately for each of
the six combinations of multiple or single channel model
and summation exponent of 2, 4 and co. The resulting
filters appear in Fig. 4.

In order for a given model to predict the same contrast
sensitivity as the summation exponent changes, the
contrast gain of the filter must change. The larger the
exponent, the larger the gain required, because the
summation over space and/or spatial frequency is
reduced. Because the calibration gratings had constant
area, the single channel model filters have the same
shape. The multiple channel model filters, however, have
different shapes for the different summation exponents.
As the summation exponent increases, the multiple
channel model needs more gain at high spatial frequen-
cies because of the increase in the number of channels
with spatial frequency.

RESULTS AND DISCUSSION

Without the contrast gain factor

Predictions of the three models for the discriminability
in ¢’ units of the object image from the background image
for each of the three summation exponents are plotted in
the left-hand column of Fig. 5. These least squares
predictions of the relative observer discriminabilities
were computed in the log domain from the model
predictions, assuming only an additive constant (dis-
criminability domain multiplicative factor). Including
either constant terms or squared terms in the discrimin-
ability domain did not significantly improve the fits.

The model predictions in Fig. 5 have been shifted
vertically by the multiplicative factors needed to predict
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FIGURE 4. , Contrast sensitivity filters for the multiple
channel; and ———, single channel models obtained from the
calibration to Barten’s (Barten, 1993) contrast sensitivity equation.
The uppermost pair of curves are the filters for a summation exponent
of co, the middle pair are for an exponent of 4 and the lowest pair for an
exponent of 2. Note that with the weaker summation rules (larger
exponents), more gain is required for the models to predict a given
contrast sensitivity.

the average observer discriminabilities. The factors for
the exponents 2, 4 and oo, respectively, are 0.21, 0.30 and
0.27 for the multiple channel model, 0.19, 0.12 and 0.059
for the single channel model and 0.037, 0.17 and 0.43 for
the digital image difference metric. The multiple channel
model has correction factors closer to 1.0, indicating that
its within-channel masking allows it to better predict our
observer detection performance when calibrated for
contrast detection on a uniform background.

To compare the models’ abilities to predict the relative
detectability of the different targets, the standard errors of
the log predictions shown in Fig. 5 were converted to
decibels. The prediction errors in decibels for the
exponents 2, 4 and oo, respectively, are 3.4, 2.3 and
2.6 dB for the multiple channel model; 3.8, 3.6 and
5.2 dB for the single channel model; and 3.7, 3.3 and
3.0 dB for the digital image difference metric. The lack of
fit is statistically significant at the 0.05 level by an F test
(d.f.=5,5) if the prediction error >1.12 dB. The best
performance on this error measure is achieved by the
multiple channel model with a summation exponent of
p=4. The exponent of 4 was also best for the single
channel model, which did very poorly with the maximum
rule (f = o). The digital image difference rule performed
best with the maximum rule.

With the contrast gain factor

To account for general contrast masking effects, the d’
predictions were multiplied by the correction factor given
by equation (7). For each model and summation exponent
f, a best fitting ¢y was estimated by minimizing the
standard error of prediction in the log sensitivity domain,
allowing an arbitrary multiplicative factor. Thus, the
estimated ¢y was not constrained by the average
detectability of the targets. The values of ¢( in percent
contrast for the exponents 2, 4 and oo, respectively, were
6.7, 14.2 and 9.2% for the multiple channel model, 0.0,
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FIGURE 5. Model predictions. Mean observer detectabilities (d's) for the six image pairs (see Fig. 2) are plotted as points with
error bars corresponding to 95% confidence intervals based on the variance between the two groups of observers. The same data
are plotted in each panel to allow comparison with the predictions of each model. The multiple channel predictions are shown in
the top panel, the single channel predictions in the middle panel and the digital image difference predictions in the bottom panel.
The left column contains the predictions obtained when the contrast gain factor was not used while the right column contains the
predictions including the factor. For each model, predictions are shown for each of the summation exponents tested: ————,
2;---,4;and - - -, co. The lines representing the model predictions have been shifted vertically by multiplicative factors (given
in the text) needed to correctly predict the average of the six detectabilities. Without the contrast gain factor (left column), the
multiple channel model with an exponent of 4 (top panel, - - -) provides the best fit to the detection data. When the contrast gain
factor is included (right column), however, the predictions of all three models improve for all exponents. In this case, the
predictions of three models fit the detection data equally well for an exponent of 4 (- - -).

4.3 and 0.0% for the single channel model and 0.0, 0.0
and 0.0% for the digital image difference metric. As the
amount of contrast masking varies inversely with the
magnitude of ¢y [equation (7)], the larger values of ¢y for
the multiple channel model are expected because it
already incorporates within-channel contrast masking.
The predictions of the three models with the contrast
gain factor are plotted in the right-hand column of Fig. 5
for each of the three summation exponents. Comparing
these predictions to those in the left-hand column reveals
that the contrast gain factor improved the relative
predictions of all the models for all exponents. Again,

the lines representing the model predictions in Fig. 5 have
been shifted vertically by the multiplicative factors
needed to predict the average observer d'. In this case,
the multiplicative factors for the exponents 2, 4 and oo,
respectively, are 0.63, 0.49 and 0.40 for the multiple
channel model, 0.036, 0.54 and 0.011 for the single
channel model and 0.60, 2.7 and 6.9 for the digital image
difference metric. Comparing these scale factors to those
corresponding to the un-normalized versions of the
models shows that when ¢y was zero, the division by ¢
(background contrast), a number < 1, shifted the scale
factor farther from unity. However, when ¢y was nonzero,
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the scale factors were all closer to unity than they were
prior to contrast gain normalization, indicating better
prediction of the average d'.

Once again, in order to compare the performance of the
various models, the standard errors of the log predictions
shown in Fig. 5 were converted to decibels. Note that
because a degree of freedom was removed for the
estimation of ¢, the errors for the normalized models are
not forced to be smaller than those for the un-normalized
models. The normalized prediction errors in dB for the
exponents 2, 4 and oo, respectively, are 1.9, 1.3 and 2.0
for the multiple channel model, 1.1, 1.1 and 2.5 for the
single channel model and 1.4, 1.1 and 1.4 for the digital
image difference metric. The lack of fit is statistically
significant at the 0.05 level by an F test (d.f. = 4, 5) if the
prediction error >1.14 dB. Thus, with the addition of the
contrast gain factor, all three models provided better
predictions of the relative detectability of the targets and
the models were essentially equivalent with their best
summation exponent, f§ = 4.

For an exponent of 4, the multiplicative factors given
above indicate that the normalized models still mis-
predict the observer data by a factor near 2.0. A possible
explanation lies in the fact that the observer data were
obtained in a detection experiment while the models
being tested are models of image discrimination. To
examine this possibility, additional data were collected in
a discrimination experiment.

EXPERIMENT 2: OBJECT DISCRIMINATION
Methods

Stimuli. The stimuli for this experiment were the lower
resolution gray scale images that were used as input to the
models (Fig. 2). Test images were constructed from each
image pair as in Experiment 1, with the difference that
mixing proportions of 0.0, 0.1, 0.2 and 0.4 were used for
all six image pairs. The images were presented on a 15"
Sony monitor using a look-up table to match the
luminance and gamma of the monitor used in the object
detection experiment. Because the resolution of the
images used in this experiment was lower by a factor of
two than that of the previous experiment, the viewing
distance was set to give 47.5 pixels/deg to equate the
spatial frequency content of the two sets of images.

Observers. Three non-military observers participated
in this experiment. They were all near 30 yr of age and
had been refracted within 2 months of the experiment to
normal acuity.

Procedure. As in the detection experiment, the
observers were asked to rate each of the 24 images (six
original images at four levels of object detectability each)
on a four-point rating scale. For this experiment, the
ratings were as follows:

1. Definitely the non-vehicle image.
2. Probably the non-vehicle image.
3. Probably the vehicle image.
4. Definitely the vehicle image.
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FIGURE 6. Comparison of d values obtained from the detection and
discrimination experiments. Average d’ values for the 19 observers
who participated in the detection experiment (Experiment 1) are
plotted against the average d' values for the three observers who
participated in the discrimination experiment (Experiment 2). Error
bars represent 95% confidence regions based on the pooled standard
deviations. The number next to each data point denotes the
corresponding image pair (see Fig. 2). The dashed line in the graph
is a best-fitting line of unit slope in log-log coordinates. The y-
intercept of this line, 0.52, is the multiplicative factor for predicting the
detection data from the discrimination data. This factor is close to the
multiplicative factors needed to allow the contrast-gain-normalized
multiple and single channel models to predict the average detectability
of the six target/background combinations.

Instead of presenting all the images in one completely
randomized sequence (as in Experiment 1), mixture sets
based on each of the six original images were presented
in separate blocks so the observers could respond to any
visible difference and not only rely on those that
contributed to the detection of the vehicle.

Trials were run in blocks of 60, using one vehicle and
its background. Each of the four images composing a
mixture set (no vehicle, 10, 20 and 40% vehicle) was
presented with probability 0.25. Before each set of 10
trials, the 100% vehicle image was shown to the observer
as a memory aid. Six blocks of trials were run for each of
the six mixture sets in a 6x6 Latin square design,
randomized separately for each observer. The image
duration was 1.0 sec.

Data analysis. The data were analyzed in the context of
the same Thurstone scaling model used to analyze the
data of Experiment 1, except that in the parameter
estimation, each observer had separate d’s and criterion
values were estimated separately for different blocks of
trials. The resulting discriminability parameter estimates
were scaled to represent the distance (d') from the 100%
vehicle image to the non-vehicle image.

Results and discussion

The geometric means of the three observers’ d
estimates are shown in Fig. 6 along with the mean d'
estimates obtained in Experiment 1. The ordering of d's
with respect to the six image pairs is similar for both
experiments. The standard deviation of prediction of the
detection d's from the discrimination d's in the log
domain gives a prediction error of 1.6 dB. The multi-
plicative factor for predicting the detection results from
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the discrimination results is 0.52. This factor is close to
that needed to scale the contrast-gain-normalized multi-
ple and single channel model predictions to fit the
observer data. Thus, it can be regarded as the factor
needed to correct for the difference between detection
and discrimination in this situation.

GENERAL DISCUSSION

The detectability of targets in natural scenes was
measured and compared to the predictions of three image
discrimination models. The models were able to predict
the psychophysical measures of target detectability for
our six target/background combinations. This result
suggests that when search is removed from the detection
task, performance is limited by those target properties
and background masking properties that are accounted
for by these models. Note also that the models were able
to predict the psychophysical data despite the fact that
they were presented with gray scale images while the
human observers were presented with color images. This
implies that, for our image set, chromatic information
was not a major factor in the detection of the target.

Models without contrast gain

The simplest discrimination metric considered was the
Minkowski distance metric applied to the images in the
digital domain. For a summation index of 2, this metric is
the RMS crror metric used by the digital image
processing community. The best exponent for this metric
was oo, turning the metric into the maximum absolute
difference between the digital image pixels. This result,
suggesting no spatial summation, was probably helped by
our coarse sampling of exponent values and by the low
pass filtering done in the course of lowering the
resolution of the images presented to the models. This
metric outperformed the single channel model, which
takes into account the contrast sensitivity of the observer.
Although contrast sensitivity must in general be taken
into account (Girod, 1989), others have also found no
advantage for adding the complexity of a contrast
sensitivity filter (Farrell, Trontelj, Rosenberg & Wise-
man, 1991). Here, the digital image difference was better
than the single channel model at predicting the relative
detectability of our six target/background combinations,
regardless of the summation exponent. This version of
the single channel model can be regarded as a visible
luminance contrast difference metric. The advantage of
the digital value metric over the visible contrast metric
was probably abetted by the aforementioned low pass
filtering of the images and might reflect that, because of
the gamma function of the display, the digital values are
closer to a JND intensity scale than are the luminance
contrast values.

The multiple channel model with contrast gain may
have outperformed these simpler models because the
within-channel intensity scale is closer to a discrimin-
ability scale. Another possibility is that the channels are
the appropriate domain for summing the differences
generated by the target. Evidence for this being the larger
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effect can be found in the pattern of errors for the
summation exponents 2 and 4. For the exponent of 2,
summation is based on the Euclidean distance and is
relatively unaffected by the channel representation. The
intensity scaling is present in the mulitiple channel model
and there is only a 0.4 dB difference in favor of the
multiple channel over the single channel model. When
the summation exponent was changed to 4 so that the
channel representation matters, the single channel model
improved by only 0.2 dB while the multiple channel
model improved by 1.1 dB.

The digital difference metric does not predict the
average level of detection. Without the contrast gain
factor, the single channel model predicts that the
detectability of a target depends only on its visible
contrast and not on the contrast in the background. In
these high contrast backgrounds, it badly overpredicts the
average target detectability. Contrast within a channel of
the multiple channel model does reduce the sensitivity for
differences within that channel, so the background
contrast does reduce the predicted detectability of a
target. The multiple channel model thus does better than
the single channel model at predicting the average
detectability. However, this effect is not strong enough
to predict the masking of our natural backgrounds and the
model overpredicts the average detectability.

Models with contrast gain

To say that channel models need to include a contrast
gain adjustment that depends on input from other
channels is to say that the JND scale for a channel
depends on the activity in other channels as well. If the
contribution from other spatial frequency channels is
relatively independent of spatial frequency, and the
background is spatially homogeneous, interchannel
interactions can be approximated by a simple contrast
gain factor. The addition of a contrast gain factor
improved the predictions of all three models, masking
the advantages of both contrast sensitivity filtering and
the spatial frequency channel representation. As a result,
the best predictor of the relative detectability of our six
target/background combinations was the generalized
vector length of the difference image divided by the
background image standard deviation. This simple
measure, however, does not predict the average level of
target detectability. The gain control parameter estimated
to optimize the prediction of the pattern of detection
differences also allowed the single and multiple channel
models to accurately predict the average level of target
discriminability in the second experiment, and thus
overpredict the average target detectabilities by a factor
of 2.

CONCLUSIONS

Discrimination models designed to answer, “Are these
two images different?” can predict the answer to the
question, “Is there an object in this image?” When the
effects of general contrast masking were not taken into
account, a multiple channel model performed better than
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either a single channel model or a digital image
difference metric at predicting both the relative (between
the six images) and average levels of target detectability.
When general contrast masking effects were included,
however, the relative predictions of all three models
improved to the same level. Visual transformations of the
digital images were not needed to predict the relative
detectability or discriminability. The two visual models
were calibrated to predict grating detection on a uniform
background. With general contrast masking, both the
single and multiple channel models predicted the average
discriminability.
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