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What does the eye see best?
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Our eyes see so much in such varied conditions that one might
consider the question posed in the title to be meaningless, but
we show here that, within the range that we have been able to
test, there is a particular spatiotemporal pattern of light that is
detected better than any other. At least two plausible theories
of visual detection predict that a stimulus will be seen best (will
have greatest quantum efficiency) when it matches the weighting
function of the most efficient detector. We have measured
quantum efficiency for detecting a wide variety of spatiotem-
poral patterns using foveal vision in bright light. The best
stimulus found so far is a small, briefly exposed circular patch
of sinusoidal grating having a spatial frequency of ~7 ¢ deg™?,
drifting at ~4 Hz. We propose that this is the weighting function
of the most efficient human contrast detector, We believe this
answer to the question is unexpected and may have fundamental
implications with regard to the mechanisms of visual perception.

A detector is a theoretical entity which maps each presenta-
tion of a visual signal into an internal representation on which
the observer’s decision is based. As a visual signal is distributed
over space and time, any detector must collect together and
appropriately combine information at different points in the
image at different times. One important class of detectors
performs this combination linearly: at each point in space and
time, the signal is weighted by some coefficient and these values
are added together. The weighting function specifying these
coefficients completely characterizes the detector. If this weight-
ing function is w(x, y, 1) and the signal is I(x, y, ), then the
response R of the detector, before the decision stage, is given
by

R= “J Wi, 35 4T 9, 8 ol )

In the case of a visual neurone, the spatial weighting function
corresponds to what is ordinarily called the receptive field
sensitivity profile, and there is evidence for linear summation
of small signals for many retinal ganglion cells' ™ and neurones
of the primary visual cortex™®,

The performance of a visual detector is ultimately limited by
noise, part of which is inherent in the quantum fluctuations in
the stimulus, and part of which may be due to the physical
components of the detector. If this noise is independent from
point to point and moment to moment, then there is a well
known method for optimally combining information from the
image. This optimum is achieved by weighting each point in
proportion to its individual signal-to-noise ratio. Hence if the
signal is I(x, y, ), then the optimal linear weighting function
is kI(x, v, t) where k is any constant. This optimal detector is
said to be ‘matched’ to the signal.

The best any visual detector can ever do is to meet the limit
set by quantum fluctuations. This performance therefore rep-
resents an ideal, and performance of any detector relative to
thisideal may be expressed as an efficiency. Specifically, suppose
that the signal is some intensity perturbation, [,(x, y, t) that is

added to an otherwise uniform steady background, Iu(x, v,

V= I.. On cional triale. the intensitv in the image is
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where c(x, y, {) is the contrast at each point. Responses to
signal-plus-noise and noise-alone trials are

Ryin= _[” wx, y, sin(x, v, t) dx dy dt
= Iy -”‘J' wix, y, t) dx dy dt

+1y IIJ wix,y, De(x, y, 1) dx dy dt (3)
and

Ru=1Iy _”j w(x,y,1)dx dy d¢ (4)

The difference between these responses (the portion due to the
signal alone) is

Rs=Run.s— Ry

Ty ”..[ wix, y, Helx, y, ) dx dy dt

Where ¢ is small, as it is in these experiments, the variance of
these responses will be approximately equal and given by the
variance at each point (which is simply fy when intensity is
expressed in quanta deg *s™') multiplied by the square of the
weight at that point and summed:

V=Iy ‘”-J w2(x, y, 1) dx dy dt (6)

However it is measured, performance will be monotonic with
the ratio RS/J V, usually called the signal-to-noise ratio or d’.
As noted above, for the ideal detector, the weighting function
is matched to the signal, in which case
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E is the contrast energy of the signal: the integral of the square
of the contrast over all the dimensions in which it varies.
Quantum efficiency (F) is the square of the ratio of empirical
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Fig. 1

! An example of a grating patch. When viewed from a
distance such that one cycle of the sinusoid subtends 1deg of



and ideal d' values for a given contrast energy, or cquivalently
the ratio of idcal and empirical contrast energices, Fen] Ewcrunts
at some fixed value of ' (refs 7-9),
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for constant d’

We use the latter relation as in our experiments we varied
contrast to yield a fixed value of d'. This expression also makes
it clear that for any visual signal on a fixed background,
ciliciency is inversely proportional to threshold contrast energy.
Hence that signal is scen best (seen with greatest cfficiency) for
which threshold contrast energy is least.

Quantum cfliciencey for a particular signal will be less than
onc il the detector must contend with noise in addition to
quantum fluctuations. However, provided that the noise is
cetfectively uniform over the spatial and spectral extent of a
signal, the optimal detector will still be one whose weighting
function is matched to the signal.

Our principal motive in asking what the cye sces best is that
the preceding obscervation may be inverted: if only a single
detector exists, then the form of the signal that is seen best
identifies the weighting function of the detector'®. If on the
other hand there are several detectors with different weighting
functions, then the best signal would identify the weighting
function of the most cllicient detector—that least impeded by
noise. Therefore the search for the best signal is a search for
the weighting function of the most efticient visual detector.

In our experiments we used a two-interval forced-choice
procedure. One interval contained Iy, the other 1.« To per-
form optimally, the observer would choose that interval in
which the detector gave the larger response. An alternative
decision rule that has interested us is to select that interval in
which the response exceeds some threshold, and if this occurs
in neither interval, to guess. Threshold is set so that it is never
exceeded in both intervals. Fortunately, it is also truce for this
detector that contrast energy is least when the signal is matched
to the detector weighting function'. Thus here too, when only
one detector exists, that signal will be seen best that is matched
to the detector weighting function. When several detectors exist,
possibly with different thresholds, the best stimulus will identify
the weighting function of the detector with lowest threshold.
As these thresholds are presumably set by the relevant noise,
it is clear that these two formulations are quite similar.

In our scarch for the best stimulus we have confined oursclves
to two classes of patterns, the first being square increments
with two adjustable parameters: width and duration. The
sccond class consists of patches of drifting sinusoidal gratings
with gaussian cnvelopes in horizontal, vertical and temporal
dimensions. A drifting patch with unit contrast may be written

falexp | =(x/s ) = (y/s,)? ~(t/s)7] (9)

The patch has five parameters: the spatial frequency f,, the
drift frequency £, and the horizontal, vertical and temporal
gaussian half-widths s, s, and s,. The width, height or duration
of a patch is defined as twice the relevant half-width, An
example of a grating patch is shown in Fig. 1.

This second class of pattern is more general than it may at
first scem. With appropriate choice of parameters, it includes
circular spots of various sizes and thin lines of various lengths,
Patches were used in part for their generality, and in part
because they include waveforms which resemble the weighting
functions of simple cortical cells™,

All signals were superimposed on  a  background of
340 c¢dm “, and were computer-generated on a large (20x 30
cm) cathode ray tube with a *'P phosphor. Viewing was
binocular with best optical correction and natural pupils from a
distance of 228 ¢cm. Observers fixated the centre of the square
increment or of the stationary spatial gaussian window. We

ey, ) =sin [ 27(fx

For square increments, we measured thresholds for squares
ranging in width from 0.075 to 1.2 deg, and varying in duration
from 10 to 400 ms. The best square we have found has a 0.3 deg
side, and a duration of 50 ms. For obscrver H.B.B., it has a
threshold contrast energy of —5.6 log deg” s, which corresponds
to a threshold contrast of 2.36%. Squares as smali as 0.075 deg
on a side were detected almost as well.

To find the best grating patch, we must hunt through a
five-dimensional space. We have necessarily limited ourselves
to a number of slices through this space, and can show here only
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Fig. 2 Contrast energy thresholds for grating patches as a func-

tion of duration (a), drift rate (b), height and width (c), and spatial
freanencv (d). Heioht. width and duration of a natch are defined



a few of the many we actually examined. Figure 2a shows
contrast energy thresholds for a 10 ¢ deg ' patch, 0.3 deg in
height and width, drifting at 4 Hz. We¢ have also measured
thresholds for flickering, rather than drifting patches. For the
stimuli in Fig. 2a, drifting and flickering patches have almost the
same threshold contrast energy. A duration of ~160 ms is best,
although the maximum is not very sharp. Figure 26 shows the
dependence on temporal frequency of threshold contrast energy
for a 6 c deg ' patch, 0.5deg in height and width, with an
optimal duration of 160 ms. The best frequency is ~4 Hz.
Figure 2¢ illustrates the effect of height and width on the
threshold contrast energy of a 6 ¢ deg ' patch with optimal drift
rate and duration of 4 Hz and 160 ms. Minimum threshold
contrast energy occurs at a width and height of ~3 cycles. From
comparable results at other spatial frequencies, we find the
optimum to be more nearly a fixed number of cycles than a fixed
size in degrees. Thus, in Fig. 2d we show contrast energy
thresholds for patches of various spatial frequencies in which
height and width arc fixed at the optimal value of 3 cycles.
Duration and drift rate arc again set to optimal values of 160 ms
and 4 Hz. The optimum spatial frequency is found to lie between
6 and 8 ¢ deg '. Figure 1, when viewed from such a distance
that one cycle of the sinusoid subtends about 1/7th of a degree,
is a static picture of what the eye sees best.

This is the most efficiently detected stimulus we have dis-
covered. If visual thresholds are set by linear detectors, this
approximates the weighting function of the most efficient among
them. It is likely that the threshold for a given stimulus is not
sct by a single detector at a single point in time, but rather by
probability summation (or some other variety of nonlinear
combination) over various detectors and over time'>'*. A more
precise estimate of the detector weighting function would take
this into account.

For observer H.B.B., the best stimulus has a threshold con-
trast cnergy of —6.03 log deg”s, corresponding to a threshold
contrast of 1.44% at 6 ¢ deg '. This is about one-third the
threshold contrast energy of the best square. We have not
investigated all possible patterns, so a still more visible stimulus
may exist at the luminance we have used. We invite those with
candidate stimuli to test them against our best.

Note that at the¢ moderately high luminance we have used
{340 cdm 7, the actual quantum efficiency is only ~0.0005
{d"=1.273 and for both pupils together, Iy=4.2x 10° quanta
deg *s '). Much higher levels of quantum efficiency have been
obtained at lower photopic luminances, and at low scotopic
luminances the value approaches the fraction of quanta
effectively absorbed'®. As the foveal cones must surely absorb
a much higher fraction of the available quanta, there are clearly
limits to sensitivity beyond the quantum fluctuations. Recent
measurements of thresholds for grating patches embedded in
computer-generated noise'® suggest near-perfect statistical
cfficiencies for signals like our best. Although noise added to
the stimulus docs not necessarily mimic internal noise, this

observation reinforces our suspicion that the visual brain con-
tains detectors with weighting functions of this form, and
strengthens our belief that intrinsic noise limits detection on
high luminance backgrounds.

The particular form of our best stimulus is of interest for
several reasons. First, the detector spatial weighting function
deduced here resembles the receptive field sensitivity profiles of
many cortical neurones. The spatial frequency bandwidth of our
best detector is about one half-octave, although stimuli with
one-octave bandwidth are seen almost as well. Movshon et al.’?
and De Valois et al.® found that about 15% of simple cells in
area 17 of cat and monkey have bandwidths of one octave or
less. Second, we note that the detectors discovered here
resemble those derived from other recent experiments on both
detection'™"” and discrimination''” and may account for a
broad range of previous psychophysical results.

Note also that quantum efficiency changes rather slowly with
change of some stimulus parameters near the optimum. This not
only makes the search for the best stimulus more difficult, but
also suggests that the brain may contain many such detectors,
with weighting functions located at different points and suited
to stimuli of different parameters. In this regard we observe that
the waveform of the best stimulus is one of a set of elementary
basis functions devised by Gabor®” and subsequently shown by
Helstrom?®' to provide a complete and exact representation of
an arbitrary waveform. Therefore a sct of such detectors, when
distributed appropriately over space and spatial frequency, are
able to encode an arbitrary visual image, as suggested in several
recent models'”****, Thus patterns like that in Fig. 1 may be
among the elementary features of visual perception.
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