RECURSIVE, IN-PLACE ALGORITHM FOR THE HEXAGONAL ORTHOGONAL ORIENTED
QUADRATURE IMAGE PYRAMID

Andrew B. Watson

Vision Group, NASA Ames Research Center
Moffett Field, CA 94035

ABSTRACT

Pyramid image transforms have proven useful in image coding and pattern recognition. The Hexagonal
orthogonal Oriented quadrature image Pyramid (HOP), transforms an image into a set of orthogonal, oriented,
odd and even bandpass sub-images. It operates on a hexagonal input lattice, and employs seven kernels, each of
which occupies a neighborhood consisting of a point and a hexagon of six nearest neighbors. The kernels consist
of one lowpass and six bandpass kernels that are orthogonal, self-similar, and localized in space, spatial
frequency, orientation, and phase. The kernels are first applied to the image samples to create the first level of
the pyramid, then to the lowpass coefficients to create the next level. The resulting pyramid is a compact,
efficient imagge code. Here we describe a recursive, in-place algorithm for computation of the HOP transform.
The transform may be regarded as a depth-first traversal of a tree structure. We show that the algorithm
requires a number of operations that is on the order of the number of pixels.

1. INTRODUCTION

The Hexagonal orthogonal Oriented quadrature image Pyramid (HOP) transform converts an image into
a sct of sub-images that vary in resolution and orientation. It is a pyran‘ud transform in the sense that the size
of each sub-image is proportional to resolution!. A pyramid transform is analogous to to a subband code 23,4,
The distinctive features of the HOP transform arc that it is a pyramid transform, that it operates on a
hexagonal lattice, that it is orthogonal, that the sub-images are bandpass and oriented, that the kernels form
quadrature pairs, and that the passbands resemble those of md1v1dual neurons in primate visual cortex. More
extensive descriptions of the transform are given elscwhere 56.7.8 The purpose of this paper is to describe a
recursive, in-place algorithm for computing the HOP transform of a square image.

2. HOP TRANSFORM

The HOP transform is characterized by a set of seven kernels, each with seven coefficients arranged in a
hexagon (Fig. 1).

Figure 1. Seven HOI kernels represented by greylevels. The lowpass kernel is at the center, the three
even kernels are in the upper right, and the three odd are to the lower left.

194 / SPIE Vol. 1099 Advances in Image Compression and Automatic Target Recognition (1989)



The seven kernels are derived in such a way that all are orthonormal, three are even, three are odd, and one is
lowpass. Within each hexagonal kernel, the samples are ordered in neighborhood order (this order is
arbitrary, but we proceed from the center to the right and then counterclockwise). The seven kerncls can be
represented as the rows of a transformation matrix H, in which the column index corresponds to the
neighborhood order.

h h h h h h h
a b b ¢ b b c
a ¢ b b ¢ b b
H=| a b ¢ b b ¢ b (1)
0 -e e f e -e -f
0 -f -e e f e -e
L 0 -e -f -e e f e .

where

=1/17 (2)

h
a = 12h (3)
f = 12/ 4
b = -(1+h)f 5
c = (2-h)f 6
e = 2f 7

The HOP transform generates seven sub-images at each resolution. The highest resolution (level 0) sub-
images are produced by applying the seven kernels to hexagonal neighborhoods that completely tile the
image. The result of each application is a single cocfficient that constitutes a pixel of the sub-image. Thus each
sub-image is one seventh the size of the original. The sub-images at the next lower resolution (level 1) are
produced by applying the seven kernels to the lowpass sub-image from level 0. The remaining levels are created
in the same way, by progressive transformation of the lowpass sub-image from the previous level.

3. SQUARE COORDINATES

Although designed on a hexagonal lattice, the HOP transform may be applied to pixels on a square
lattice. The square lattice is regarded as a skewed hexagonal lattice. This transforms the hexagonal
ncighborhood into a quasikexagonal neighborhood (Fig. 2).

-

Figure 2. Hexagonal and quasihexagonal neighborhoods.

SPIE Vol. 1099 Advances in image Compression and Automatic Target Recognition (1989) / 195



This purely geometric transformation has no effect on the arithmetic of the HOP transform, but alters the
shape of the kernels, and consequently, the passbands. For example, they are no longer invariant with respect
to rotation. The other requirement for application to a square image is that the image must be a power of 7 on
cach side.

4, PIXEL TREE
The pixcls in the image may be regarded as the nodes in an inverted tree structure with seven-fold

branching, as shown in Fig. 3 (for clarity, only three-fold branching is shown).

13 Level

Figure 3. An image represented as a tree structure. The bold numbers give the order in which nodes are
visited, the italic numbers give the order of application of local transforms.

The terminal nodes of the tree (level 0) are the image pixels. These pixels are grouped into
quasihexagonal neighborhoods that collectively tile the image. The parent node of cach neighborhood is the
center sample. These parent nodes may also be grouped into quasihexagonal neighborhoods (level 1). (Note
that the pixels of level 1 are also nodes of level 0.) The centers of the level 1 neighborhoods form the nodes of
level 2, and so on. The root of the tree is the center pixel.

The complete transform is simply a matter of applying the same local transform to each neighborhood at
cach level of the tree, but doing so in the correct order. This order is given by a depth-first tree traversal. At
each node, starting from the root, we chose the next unvisited branch, proceeding in neighborhood order. If
there are no remaining untried branches, or if we have reached the terminal nodes, we ascend one level. A
neighborhood is transformed whenever maximum depth is reached, or when all the branches of a node have
been traversed. This sort of tree traversal is pictured in Fig. 3. The bold numbers indicate the order in which the
nodes are visitied, and italic numbers show the order in which local transforms would be computed. This
pattern of tree traversal can be achicved efficiently with a recursive process.

186 / SPIE Vol. 1099 Advances in Image Compression and Automatic Target Recognition (1989)



5. RECURSION

The recursive process is described by the following pseudocode.

main()
{ XC = yC = width/2;
level = logz(width*width);
descend();
}
descend()
{ X = XC;
Y = ¥C,
level--;
if{ level > 1)
{ descend();
for{i=1;i<7;i++) branch(i);
XC=X;
yc=Yy;
}
transform();
level++;
}
branch{noda)
{ xc += xo[level][node];
yc += yollevel][node];
descend();
}
transform()
{ compute coordinates of samples N in neighborhood;
transform as N -> HN;
}

We begin by setting the current ncighborhood center (X¢,y¢) to the center of the image, and the current
level to the number of levels. We then call the routine descend(). This routine sets a temporary location equal
to the current center, descends one level, and checks whether we have reached level 1. If not, descend() is
called (recursively). This recursive descent continues until level==1. At that point, the neighborhood of pixels
is transformed. The procedure then ascends onc level, and exits the deepest call to descend(). The procedure
then moves to each remaining sample in the neighborhood at that level. In the routine branch(), the current
center is sct to that sample location, and descend() is called again.

The routine transform() multiplies the neighborhood of seven samples by each of the seven kernels. If
the ncighborhood is represented as a column vector N, the transformation can be represented as multiplication
by the matrix H

N 5>HN (8)

SPIE Vol 1099 Advances in Image Compression and Automatic Target Recognition (1989) / 197



6. INVERSE TRANSFORM

Only two small changes to the algorithm are required to compute the inverse transform. The first is that
H!, the inverse of the transformation matrix H, is used in transform(). Since H is orthonormal, H1! =H!. The
second is that the transform() routine is called upon entry to descend(), rather than just before exit. This
means that cach parent neighborhood is transformed before its children.

The use of recursion leads to very compact code, but may require exorbitant stack memory. This is not
likely to be a problem here, as the maximum depth of recursion is equal to one less than the number of levels.
The number of levels is equal to the log to the base 7 of the number of pixels.

7. ADDRESS CALCULATIONS

Much of the work in the HOP transform is address calculations. These consist of two parts. The first is
generation of a vector of offscts that describe the location of the next sample in the neighborhood, relative to
the current sample. The sccond is the calculation of absolute coordinates, based on these offsets and a
neighborhood conter location. The former may be done once, before the transforun begins. The second must be done
each time the routine transformd) is called.

As noted above, conversion from hexagonal to a square lattice transforms the neighborhood shape from
hexagonal to quasihexagonal. We represent the coordinates of the samples within the neighborhood by a
matrix, R, with two rows and seven columns, wherein each column vector represents the coordinates of one
sample relative to the center. At level 0, these coordinates are

01-1-101 1
Ry = (9)
0010-1-10

The order of samples is pictured in Fig, 4.

Figure 4. Locations of samples in a neighborhood at level 0. Arrows indicate neighborhood order of
samples.

When the image is tiled with neighborhoods like that in Fig. 4, the neighborhood centers form a new
lattice. There are in fact two ways to tile the image; we chose the one defined by the sampling matrix

-1
Sp = | 2 (10)
13

Each neighborhood center is an integer linear combination of the column vectors of the sampling matrix Sg. This
tiling is shown in Fig, 5.

188 / SPIE Vol 1098 Advances in Image Compression and Automatic Target Recognition (1988)



Figure 5. Tiling pattern for quasihexagonal neighborhoods at level 0. The arrows show one
neighborhood from level 1, composed of neighborhood centers from level 0.

We also construct a new quasihexagonal neighborhood, shown in Fig. 5, whose relative sample locations
(offsets) are given by the column vectors of the matrix SgRg. These new neighborhoods also tile the image, and

their centers are integer lincar combinations of the sampling matrix SQE, where

E =75 = H ﬂ (11)

Note that the new sample lattice defined by SQE is again square, but seven times larger than the lattice

at level 0. This process of creating larger and larger quasihexagonal tilings of the image can be repeated until
the image accommodates only one neighborhood. The sampling matrices at cach level are’given by

Sievet = SgESpE... (to level terms) (12)

The offsets at each level are given by

Rlevel = RO Slevel (13)

Since the offscts are used repeatedly, they are best computed once at the start of the transform program, or
stored as constants.

When applied to a square image, the computed address will sometimes fall outside the bounds of the
image. In this case, the address is "wrapped around” until it falls within the bounds of the square image.

8. COMPLEXITY

The computational complexity of image transforms is of great interest, since current computing equipment
operating on typical image sizes is slow relative to the response time of the human eye (.02 sec) or even the
interaction speed of the human user {1 sec). As a standard of comparison, the FFT requires a number of operations
that is order of NlogN. A remarkable feature of the HOP transform is it requires a number of operations that is
order of N. Consxder an image with N=7" pixels. The HOP transform will have n levels. Within each
neighborhood 72 operations are required. Table 1 shows the number of operations required at each level, as well
as the total.

SPIE Vol 1098 Advances in Image Compression and Automatic Target Recognition {1989}/ 199



level neighborhoods operations
0 7n—1 7n+1
i 7n-1—i 7n+1—i
n-1 1 72
' n-1 )
total Y o+l

Table 1. Operations required for the HOP transform.

As n increases, this total rapidly approaches 7"+2 /6. This corresponds to a constant 8.17 operations per pixel.
This is an upper bound, for small images fewer operations are required.

9. ACKNOWLEDGEMENTS

I thank Albert J. Ahumada, Jr. for many useful discussions. This work supported by NASA RTOP 505-67.
10. REFERENCES

1. S. Tanimoto and T. Pavlidis,"A Hierarchical data structure for picture processing,” Computer Graphics
and Image Processing, 4, 104-119 (1975).

2. J.W. Woods and S.D. O'Neil,"Subband coding of images," IEEE Transactions on Acoustics, Speech, and
Signal Processing, ASSP-34(5), 1278-1288 (1986).

3. M. Vetterli,"Multi-dimensional sub-band coding: some theory and algorithms,” Signal Processing, 6,
97-112 (1984).

4. E.H. Adelson, E. Simoncelli and R. Hingorani,"Orthogonal pyram:d transforms for image coding,"
Proceedings of the SPIE, 845 (1987).

5. A.B. Watson and A.J. Ahumada Jr., "An orthogonal oriented quadrature hexagonal image pyramid,”
NASA Technical Memorandum 100054, (1987).

6. A.B. Watson,"Cortical Algotecture," in Vision: Coding and Efficiency, C. B, Blakemore , ed.,
Cambridge: Cambridge University Press (in press).

7. A.B. Watson and A.J. Ahumada Jr.,"A hexagonal orthogonal oriented pyramid as a model of image
representation in visual cortex,” IEEE Trans. Biomed. Eng., 36(1), 97-106 (1989).

8. A.B. Watson,"Receptive fields and visual representations,” SPIE Proceedings, 1077, (1989).

200 / SPIE Vol. 1099 Advances in Image Compression and Automatic Target Recognition (1983)



